ترغب بنشر مسار تعليمي؟ اضغط هنا

Interleaved Sequence RNNs for Fraud Detection

95   0   0.0 ( 0 )
 نشر من قبل Ana Sofia Gomes
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Payment card fraud causes multibillion dollar losses for banks and merchants worldwide, often fueling complex criminal activities. To address this, many real-time fraud detection systems use tree-based models, demanding complex feature engineering systems to efficiently enrich transactions with historical data while complying with millisecond-level latencies. In this work, we do not require those expensive features by using recurrent neural networks and treating payments as an interleaved sequence, where the history of each card is an unbounded, irregular sub-sequence. We present a complete RNN framework to detect fraud in real-time, proposing an efficient ML pipeline from preprocessing to deployment. We show that these feature-free, multi-sequence RNNs outperform state-of-the-art models saving millions of dollars in fraud detection and using fewer computational resources.



قيم البحث

اقرأ أيضاً

With the explosive growth of e-commerce and the booming of e-payment, detecting online transaction fraud in real time has become increasingly important to Fintech business. To tackle this problem, we introduce the TitAnt, a transaction fraud detectio n system deployed in Ant Financial, one of the largest Fintech companies in the world. The system is able to predict online real-time transaction fraud in mere milliseconds. We present the problem definition, feature extraction, detection methods, implementation and deployment of the system, as well as empirical effectiveness. Extensive experiments have been conducted on large real-world transaction data to show the effectiveness and the efficiency of the proposed system.
In several natural language tasks, labeled sequences are available in separate domains (say, languages), but the goal is to label sequences with mixed domain (such as code-switched text). Or, we may have available models for labeling whole passages ( say, with sentiments), which we would like to exploit toward better position-specific label inference (say, target-dependent sentiment annotation). A key characteristic shared across such tasks is that different positions in a primary instance can benefit from different `experts trained from auxiliary data, but labeled primary instances are scarce, and labeling the best expert for each position entails unacceptable cognitive burden. We propose GITNet, a unified position-sensitive multi-task recurrent neural network (RNN) architecture for such applications. Auxiliary and primary tasks need not share training instances. Auxiliary RNNs are trained over auxiliary instances. A primary instance is also submitted to each auxiliary RNN, but their state sequences are gated and merged into a novel composite state sequence tailored to the primary inference task. Our approach is in sharp contrast to recent multi-task networks like the cross-stitch and sluice network, which do not control state transfer at such fine granularity. We demonstrate the superiority of GIRNet using three applications: sentiment classification of code-switched passages, part-of-speech tagging of code-switched text, and target position-sensitive annotation of sentiment in monolingual passages. In all cases, we establish new state-of-the-art performance beyond recent competitive baselines.
The application of machine learning to support the processing of large datasets holds promise in many industries, including financial services. However, practical issues for the full adoption of machine learning remain with the focus being on underst anding and being able to explain the decisions and predictions made by complex models. In this paper, we explore explainability methods in the domain of real-time fraud detection by investigating the selection of appropriate background datasets and runtime trade-offs on both supervised and unsupervised models.
Many online applications, such as online social networks or knowledge bases, are often attacked by malicious users who commit different types of actions such as vandalism on Wikipedia or fraudulent reviews on eBay. Currently, most of the fraud detect ion approaches require a training dataset that contains records of both benign and malicious users. However, in practice, there are often no or very few records of malicious users. In this paper, we develop one-class adversarial nets (OCAN) for fraud detection using training data with only benign users. OCAN first uses LSTM-Autoencoder to learn the representations of benign users from their sequences of online activities. It then detects malicious users by training a discriminator with a complementary GAN model that is different from the regular GAN model. Experimental results show that our OCAN outperforms the state-of-the-art one-class classification models and achieves comparable performance with the latest multi-source LSTM model that requires both benign and malicious users in the training phase.
Fraud detection is extremely critical for e-commerce business. It is the intent of the companies to detect and prevent fraud as early as possible. Existing fraud detection methods try to identify unexpected dense subgraphs and treat related nodes as suspicious. Spectral relaxation-based methods solve the problem efficiently but hurt the performance due to the relaxed constraints. Besides, many methods cannot be accelerated with parallel computation or control the number of returned suspicious nodes because they provide a set of subgraphs with diverse node sizes. These drawbacks affect the real-world applications of existing methods. In this paper, we propose an Ensemble-based Fraud Detection (EnsemFDet) method to scale up fraud detection in bipartite graphs by decomposing the original problem into subproblems on small-sized subgraphs. By oversampling the graph and solving the subproblems, the ensemble approach further votes suspicious nodes without sacrificing the prediction accuracy. Extensive experiments have been done on real transaction data from JD.com, which is one of the worlds largest e-commerce platforms. Experimental results demonstrate the effectiveness, practicability, and scalability of EnsemFDet. More specifically, EnsemFDet is up to 100x faster than the state-of-the-art methods due to its parallelism with all aspects of data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا