ترغب بنشر مسار تعليمي؟ اضغط هنا

ConfNet2Seq: Full Length Answer Generation from Spoken Questions

66   0   0.0 ( 0 )
 نشر من قبل Vaishali Pal
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conversational and task-oriented dialogue systems aim to interact with the user using natural responses through multi-modal interfaces, such as text or speech. These desired responses are in the form of full-length natural answers generated over facts retrieved from a knowledge source. While the task of generating natural answers to questions from an answer span has been widely studied, there has been little research on natural sentence generation over spoken content. We propose a novel system to generate full length natural language answers from spoken questions and factoid answers. The spoken sequence is compactly represented as a confusion network extracted from a pre-trained Automatic Speech Recognizer. This is the first attempt towards generating full-length natural answers from a graph input(confusion network) to the best of our knowledge. We release a large-scale dataset of 259,788 samples of spoken questions, their factoid answers and corresponding full-length textual answers. Following our proposed approach, we achieve comparable performance with best ASR hypothesis.



قيم البحث

اقرأ أيضاً

243 - Hongwei Zeng , Zhuo Zhi , Jun Liu 2019
In this paper, we study automatic question generation, the task of creating questions from corresponding text passages where some certain spans of the text can serve as the answers. We propose an Extended Answer-aware Network (EAN) which is trained w ith Word-based Coverage Mechanism (WCM) and decodes with Uncertainty-aware Beam Search (UBS). The EAN represents the target answer by its surrounding sentence with an encoder, and incorporates the information of the extended answer into paragraph representation with gated paragraph-to-answer attention to tackle the problem of the inadequate representation of the target answer. To reduce undesirable repetition, the WCM penalizes repeatedly attending to the same words at different time-steps in the training stage. The UBS aims to seek a better balance between the model confidence in copying words from an input text paragraph and the confidence in generating words from a vocabulary. We conduct experiments on the SQuAD dataset, and the results show our approach achieves significant performance improvement.
177 - Cao Liu , Kang Liu , Shizhu He 2019
We tackle the task of question generation over knowledge bases. Conventional methods for this task neglect two crucial research issues: 1) the given predicate needs to be expressed; 2) the answer to the generated question needs to be definitive. In t his paper, we strive toward the above two issues via incorporating diversified contexts and answer-aware loss. Specifically, we propose a neural encoder-decoder model with multi-level copy mechanisms to generate such questions. Furthermore, the answer aware loss is introduced to make generated questions corresponding to more definitive answers. Experiments demonstrate that our model achieves state-of-the-art performance. Meanwhile, such generated question can express the given predicate and correspond to a definitive answer.
We propose a simple method to generate multilingual question and answer pairs on a large scale through the use of a single generative model. These synthetic samples can be used to improve the zero-shot performance of multilingual QA models on target languages. Our proposed multi-task training of the generative model only requires the labeled training samples in English, thus removing the need for such samples in the target languages, making it applicable to far more languages than those with labeled data. Human evaluations indicate the majority of such samples are grammatically correct and sensible. Experimental results show our proposed approach can achieve large gains on the XQuAD dataset, reducing the gap between zero-shot and supervised performance of smaller QA models on various languages.
In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlab eled e-commerce reviews and product attributes. However, safe answer problems pose significant challenges to text generation tasks, and e-commerce question-answering task is no exception. To generate more meaningful answers, in this paper, we propose a novel generative neural model, called the Meaningful Product Answer Generator (MPAG), which alleviates the safe answer problem by taking product reviews, product attributes, and a prototype answer into consideration. Product reviews and product attributes are used to provide meaningful content, while the prototype answer can yield a more diverse answer pattern. To this end, we propose a novel answer generator with a review reasoning module and a prototype answer reader. Our key idea is to obtain the correct question-aware information from a large scale collection of reviews and learn how to write a coherent and meaningful answer from an existing prototype answer. To be more specific, we propose a read-and-write memory consisting of selective writing units to conduct reasoning among these reviews. We then employ a prototype reader consisting of comprehensive matching to extract the answer skeleton from the prototype answer. Finally, we propose an answer editor to generate the final answer by taking the question and the above parts as input. Conducted on a real-world dataset collected from an e-commerce platform, extensive experimental results show that our model achieves state-of-the-art performance in terms of both automatic metrics and human evaluations. Human evaluation also demonstrates that our model can consistently generate specific and proper answers.
121 - Chuanqi Tan , Furu Wei , Nan Yang 2017
In this paper, we present a novel approach to machine reading comprehension for the MS-MARCO dataset. Unlike the SQuAD dataset that aims to answer a question with exact text spans in a passage, the MS-MARCO dataset defines the task as answering a que stion from multiple passages and the words in the answer are not necessary in the passages. We therefore develop an extraction-then-synthesis framework to synthesize answers from extraction results. Specifically, the answer extraction model is first employed to predict the most important sub-spans from the passage as evidence, and the answer synthesis model takes the evidence as additional features along with the question and passage to further elaborate the final answers. We build the answer extraction model with state-of-the-art neural networks for single passage reading comprehension, and propose an additional task of passage ranking to help answer extraction in multiple passages. The answer synthesis model is based on the sequence-to-sequence neural networks with extracted evidences as features. Experiments show that our extraction-then-synthesis method outperforms state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا