ﻻ يوجد ملخص باللغة العربية
In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlabeled e-commerce reviews and product attributes. However, safe answer problems pose significant challenges to text generation tasks, and e-commerce question-answering task is no exception. To generate more meaningful answers, in this paper, we propose a novel generative neural model, called the Meaningful Product Answer Generator (MPAG), which alleviates the safe answer problem by taking product reviews, product attributes, and a prototype answer into consideration. Product reviews and product attributes are used to provide meaningful content, while the prototype answer can yield a more diverse answer pattern. To this end, we propose a novel answer generator with a review reasoning module and a prototype answer reader. Our key idea is to obtain the correct question-aware information from a large scale collection of reviews and learn how to write a coherent and meaningful answer from an existing prototype answer. To be more specific, we propose a read-and-write memory consisting of selective writing units to conduct reasoning among these reviews. We then employ a prototype reader consisting of comprehensive matching to extract the answer skeleton from the prototype answer. Finally, we propose an answer editor to generate the final answer by taking the question and the above parts as input. Conducted on a real-world dataset collected from an e-commerce platform, extensive experimental results show that our model achieves state-of-the-art performance in terms of both automatic metrics and human evaluations. Human evaluation also demonstrates that our model can consistently generate specific and proper answers.
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of
Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artifici
This paper introduces QAConv, a new question answering (QA) dataset that uses conversations as a knowledge source. We focus on informative conversations including business emails, panel discussions, and work channels. Unlike open-domain and task-orie
In this paper, we study automatic question generation, the task of creating questions from corresponding text passages where some certain spans of the text can serve as the answers. We propose an Extended Answer-aware Network (EAN) which is trained w
Spoken question answering (SQA) is a challenging task that requires the machine to fully understand the complex spoken documents. Automatic speech recognition (ASR) plays a significant role in the development of QA systems. However, the recent work s