ﻻ يوجد ملخص باللغة العربية
Homomorphic sensing is a recent algebraic-geometric framework that studies the unique recovery of points in a linear subspace from their images under a given collection of linear maps. It has been successful in interpreting such a recovery in the case of permutations composed by coordinate projections, an important instance in applications known as unlabeled sensing, which models data that are out of order and have missing values. In this paper, we provide tighter and simpler conditions that guarantee the unique recovery for the single-subspace case, extend the result to the case of a subspace arrangement, and show that the unique recovery in a single subspace is locally stable under noise. We specialize our results to several examples of homomorphic sensing such as real phase retrieval and unlabeled sensing. In so doing, in a unified way, we obtain conditions that guarantee the unique recovery for those examples, typically known via diverse techniques in the literature, as well as novel conditions for sparse and unsign
A recent line of research termed unlabeled sensing and shuffled linear regression has been exploring under great generality the recovery of signals from subsampled and permuted measurements; a challenging problem in diverse fields of data science and
Let $I_1,dots,I_n$ be ideals generated by linear forms in a polynomial ring over an infinite field and let $J = I_1 cdots I_n$. We describe a minimal free resolution of $J$ and show that it is supported on a polymatroid obtained from the underlying r
We study the combinatorics of hyperplane arrangements over arbitrary fields. Specifically, we determine in which situation an arrangement and its reduction modulo a prime number have isomorphic lattices via the use of minimal strong $sigma$-Grobner b
There is a trinity relationship between hyperplane arrangements, matroids and convex polytopes. We expand it as resolving the complexity issue expected by Mnevs universality theorem and conduct combinatorializing so the theory over fields becomes rea
We introduce a new algebra associated with a hyperplane arrangement $mathcal{A}$, called the Solomon-Terao algebra $mbox{ST}(mathcal{A},eta)$, where $eta$ is a homogeneous polynomial. It is shown by Solomon and Terao that $mbox{ST}(mathcal{A},eta)$ i