ﻻ يوجد ملخص باللغة العربية
Let $I_1,dots,I_n$ be ideals generated by linear forms in a polynomial ring over an infinite field and let $J = I_1 cdots I_n$. We describe a minimal free resolution of $J$ and show that it is supported on a polymatroid obtained from the underlying representable polymatroid by means of the so-called Dilworth truncation. Formulas for the projective dimension and Betti numbers are given in terms of the polymatroid as well as a characterization of the associated primes. Along the way we show that $J$ has linear quotients. In fact, we do this for a large class of ideals $J_P$, where $P$ is a certain poset ideal associated to the underlying subspace arrangement.
Inspired by work of Cartwright and Sturmfels, in a previous paper we introduced two classes of multigraded ideals named after them. These ideals are defined in terms of properties of their multigraded generic initial ideals. The goal of this paper is
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We deter
Minimal cellular resolutions of the edge ideals of cointerval hypergraphs are constructed. This class of d-uniform hypergraphs coincides with the complements of interval graphs (for the case d=2), and strictly contains the class of `strongly stable h
We determine the Castelnuovo-Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with $n$ vertices the maximum regularity grows as $2n/3$. We also bound the regularity by graph theoretic invariants and c
To any toric ideal $I_A$, encoded by an integer matrix $A$, we associate a matroid structure called {em the bouquet graph} of $A$ and introduce another toric ideal called {em the bouquet ideal} of $A$. We show how these objects capture the essential