ﻻ يوجد ملخص باللغة العربية
We propose an algorithm for tabular episodic reinforcement learning with constraints. We provide a modular analysis with strong theoretical guarantees for settings with concave rewards and convex constraints, and for settings with hard constraints (knapsacks). Most of the previous work in constrained reinforcement learning is limited to linear constraints, and the remaining work focuses on either the feasibility question or settings with a single episode. Our experiments demonstrate that the proposed algorithm significantly outperforms these approaches in existing constrained episodic environments.
We initiate the study of multi-stage episodic reinforcement learning under adversarial corruptions in both the rewards and the transition probabilities of the underlying system extending recent results for the special case of stochastic bandits. We p
Episodic memory-based methods can rapidly latch onto past successful strategies by a non-parametric memory and improve sample efficiency of traditional reinforcement learning. However, little effort is put into the continuous domain, where a state is
We consider the problem of tabular infinite horizon concave utility reinforcement learning (CURL) with convex constraints. Various learning applications with constraints, such as robotics, do not allow for policies that can violate constraints. To th
We propose a policy improvement algorithm for Reinforcement Learning (RL) which is called Rerouted Behavior Improvement (RBI). RBI is designed to take into account the evaluation errors of the Q-function. Such errors are common in RL when learning th
We propose a successive convex approximation based off-policy optimization (SCAOPO) algorithm to solve the general constrained reinforcement learning problem, which is formulated as a constrained Markov decision process (CMDP) in the context of avera