ترغب بنشر مسار تعليمي؟ اضغط هنا

Constrained Policy Improvement for Safe and Efficient Reinforcement Learning

137   0   0.0 ( 0 )
 نشر من قبل Elad Sarafian
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a policy improvement algorithm for Reinforcement Learning (RL) which is called Rerouted Behavior Improvement (RBI). RBI is designed to take into account the evaluation errors of the Q-function. Such errors are common in RL when learning the $Q$-value from finite past experience data. Greedy policies or even constrained policy optimization algorithms which ignore these errors may suffer from an improvement penalty (i.e. a negative policy improvement). To minimize the improvement penalty, the RBI idea is to attenuate rapid policy changes of low probability actions which were less frequently sampled. This approach is shown to avoid catastrophic performance degradation and reduce regret when learning from a batch of past experience. Through a two-armed bandit with Gaussian distributed rewards example, we show that it also increases data efficiency when the optimal action has a high variance. We evaluate RBI in two tasks in the Atari Learning Environment: (1) learning from observations of multiple behavior policies and (2) iterative RL. Our results demonstrate the advantage of RBI over greedy policies and other constrained policy optimization algorithms as a safe learning approach and as a general data efficient learning algorithm. An anonymous Github repository of our RBI implementation is found at https://github.com/eladsar/rbi.

قيم البحث

اقرأ أيضاً

Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between task s or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.
244 - Ge Liu , Rui Wu , Heng-Tze Cheng 2020
Deep Reinforcement Learning (RL) is proven powerful for decision making in simulated environments. However, training deep RL model is challenging in real world applications such as production-scale health-care or recommender systems because of the ex pensiveness of interaction and limitation of budget at deployment. One aspect of the data inefficiency comes from the expensive hyper-parameter tuning when optimizing deep neural networks. We propose Adaptive Behavior Policy Sharing (ABPS), a data-efficient training algorithm that allows sharing of experience collected by behavior policy that is adaptively selected from a pool of agents trained with an ensemble of hyper-parameters. We further extend ABPS to evolve hyper-parameters during training by hybridizing ABPS with an adapted version of Population Based Training (ABPS-PBT). We conduct experiments with multiple Atari games with up to 16 hyper-parameter/architecture setups. ABPS achieves superior overall performance, reduced variance on top 25% agents, and equivalent performance on the best agent compared to conventional hyper-parameter tuning with independent training, even though ABPS only requires the same number of environmental interactions as training a single agent. We also show that ABPS-PBT further improves the convergence speed and reduces the variance.
Deep reinforcement learning algorithms require large amounts of experience to learn an individual task. While in principle meta-reinforcement learning (meta-RL) algorithms enable agents to learn new skills from small amounts of experience, several ma jor challenges preclude their practicality. Current methods rely heavily on on-policy experience, limiting their sample efficiency. The also lack mechanisms to reason about task uncertainty when adapting to new tasks, limiting their effectiveness in sparse reward problems. In this paper, we address these challenges by developing an off-policy meta-RL algorithm that disentangles task inference and control. In our approach, we perform online probabilistic filtering of latent task variables to infer how to solve a new task from small amounts of experience. This probabilistic interpretation enables posterior sampling for structured and efficient exploration. We demonstrate how to integrate these task variables with off-policy RL algorithms to achieve both meta-training and adaptation efficiency. Our method outperforms prior algorithms in sample efficiency by 20-100X as well as in asymptotic performance on several meta-RL benchmarks.
Reinforcement learning with function approximation can be unstable and even divergent, especially when combined with off-policy learning and Bellman updates. In deep reinforcement learning, these issues have been dealt with empirically by adapting an d regularizing the representation, in particular with auxiliary tasks. This suggests that representation learning may provide a means to guarantee stability. In this paper, we formally show that there are indeed nontrivial state representations under which the canonical TD algorithm is stable, even when learning off-policy. We analyze representation learning schemes that are based on the transition matrix of a policy, such as proto-value functions, along three axes: approximation error, stability, and ease of estimation. In the most general case, we show that a Schur basis provides convergence guarantees, but is difficult to estimate from samples. For a fixed reward function, we find that an orthogonal basis of the corresponding Krylov subspace is an even better choice. We conclude by empirically demonstrating that these stable representations can be learned using stochastic gradient descent, opening the door to improved techniques for representation learning with deep networks.
Although well-established in general reinforcement learning (RL), value-based methods are rarely explored in constrained RL (CRL) for their incapability of finding policies that can randomize among multiple actions. To apply value-based methods to CR L, a recent groundbreaking line of game-theoretic approaches uses the mixed policy that randomizes among a set of carefully generated policies to converge to the desired constraint-satisfying policy. However, these approaches require storing a large set of policies, which is not policy efficient, and may incur prohibitive memory costs in constrained deep RL. To address this problem, we propose an alternative approach. Our approach first reformulates the CRL to an equivalent distance optimization problem. With a specially designed linear optimization oracle, we derive a meta-algorithm that solves it using any off-the-shelf RL algorithm and any conditional gradient (CG) type algorithm as subroutines. We then propose a new variant of the CG-type algorithm, which generalizes the minimum norm point (MNP) method. The proposed method matches the convergence rate of the existing game-theoretic approaches and achieves the worst-case optimal policy efficiency. The experiments on a navigation task show that our method reduces the memory costs by an order of magnitude, and meanwhile achieves better performance, demonstrating both its effectiveness and efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا