ترغب بنشر مسار تعليمي؟ اضغط هنا

The Heavy-Tail Phenomenon in SGD

59   0   0.0 ( 0 )
 نشر من قبل Umut \\c{S}im\\c{s}ekli
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, various notions of capacity and complexity have been proposed for characterizing the generalization properties of stochastic gradient descent (SGD) in deep learning. Some of the popular notions that correlate well with the performance on unseen data are (i) the `flatness of the local minimum found by SGD, which is related to the eigenvalues of the Hessian, (ii) the ratio of the stepsize $eta$ to the batch-size $b$, which essentially controls the magnitude of the stochastic gradient noise, and (iii) the `tail-index, which measures the heaviness of the tails of the network weights at convergence. In this paper, we argue that these three seemingly unrelated perspectives for generalization are deeply linked to each other. We claim that depending on the structure of the Hessian of the loss at the minimum, and the choices of the algorithm parameters $eta$ and $b$, the SGD iterates will converge to a emph{heavy-tailed} stationary distribution. We rigorously prove this claim in the setting of quadratic optimization: we show that even in a simple linear regression problem with independent and identically distributed data whose distribution has finite moments of all order, the iterates can be heavy-tailed with infinite variance. We further characterize the behavior of the tails with respect to algorithm parameters, the dimension, and the curvature. We then translate our results into insights about the behavior of SGD in deep learning. We support our theory with experiments conducted on synthetic data, fully connected, and convolutional neural networks.



قيم البحث

اقرأ أيضاً

The theory and practice of stochastic optimization has focused on stochastic gradient descent (SGD) in recent years, retaining the basic first-order stochastic nature of SGD while aiming to improve it via mechanisms such as averaging, momentum, and v ariance reduction. Improvement can be measured along various dimensions, however, and it has proved difficult to achieve improvements both in terms of nonasymptotic measures of convergence rate and asymptotic measures of distributional tightness. In this work, we consider first-order stochastic optimization from a general statistical point of view, motivating a specific form of recursive averaging of past stochastic gradients. The resulting algorithm, which we refer to as emph{Recursive One-Over-T SGD} (ROOT-SGD), matches the state-of-the-art convergence rate among online variance-reduced stochastic approximation methods. Moreover, under slightly stronger distributional assumptions, the rescaled last-iterate of ROOT-SGD converges to a zero-mean Gaussian distribution that achieves near-optimal covariance.
Adaptive gradient methods have attracted much attention of machine learning communities due to the high efficiency. However their acceleration effect in practice, especially in neural network training, is hard to analyze, theoretically. The huge gap between theoretical convergence results and practical performances prevents further understanding of existing optimizers and the development of more advanced optimization methods. In this paper, we provide adaptive gradient methods a novel analysis with an additional mild assumption, and revise AdaGrad to radagrad for matching a better provable convergence rate. To find an $epsilon$-approximate first-order stationary point in non-convex objectives, we prove random shuffling radagrad achieves a $tilde{O}(T^{-1/2})$ convergence rate, which is significantly improved by factors $tilde{O}(T^{-1/4})$ and $tilde{O}(T^{-1/6})$ compared with existing adaptive gradient methods and random shuffling SGD, respectively. To the best of our knowledge, it is the first time to demonstrate that adaptive gradient methods can deterministically be faster than SGD after finite epochs. Furthermore, we conduct comprehensive experiments to validate the additional mild assumption and the acceleration effect benefited from second moments and random shuffling.
We show that minimum-norm interpolation in the Reproducing Kernel Hilbert Space corresponding to the Laplace kernel is not consistent if input dimension is constant. The lower bound holds for any choice of kernel bandwidth, even if selected based on data. The result supports the empirical observation that minimum-norm interpolation (that is, exact fit to training data) in RKHS generalizes well for some high-dimensional datasets, but not for low-dimensional ones.
Stochastic gradient descent with momentum (SGDm) is one of the most popular optimization algorithms in deep learning. While there is a rich theory of SGDm for convex problems, the theory is considerably less developed in the context of deep learning where the problem is non-convex and the gradient noise might exhibit a heavy-tailed behavior, as empirically observed in recent studies. In this study, we consider a emph{continuous-time} variant of SGDm, known as the underdamped Langevin dynamics (ULD), and investigate its asymptotic properties under heavy-tailed perturbations. Supported by recent studies from statistical physics, we argue both theoretically and empirically that the heavy-tails of such perturbations can result in a bias even when the step-size is small, in the sense that emph{the optima of stationary distribution} of the dynamics might not match emph{the optima of the cost function to be optimized}. As a remedy, we develop a novel framework, which we coin as emph{fractional} ULD (FULD), and prove that FULD targets the so-called Gibbs distribution, whose optima exactly match the optima of the original cost. We observe that the Euler discretization of FULD has noteworthy algorithmic similarities with emph{natural gradient} methods and emph{gradient clipping}, bringing a new perspective on understanding their role in deep learning. We support our theory with experiments conducted on a synthetic model and neural networks.
228 - Jongwook Kim , Gabjin Oh 2012
We propose a stochastic process driven by memory effect with novel distributions including both exponential and leptokurtic heavy-tailed distributions. A class of distribution is analytically derived from the continuum limit of the discrete binary pr ocess with the renormalized auto-correlation and the closed form moment generating function is obtained, thus the cumulants are calculated and shown to be convergent. The other class of distributions are numerically investigated. The concoction of the two stochastic processes of the different signs of memory under regime switching mechanism does incarnate power-law decay behavior, which strongly implies that memory is the alternative origin of heavy-tail.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا