ﻻ يوجد ملخص باللغة العربية
We propose a stochastic process driven by memory effect with novel distributions including both exponential and leptokurtic heavy-tailed distributions. A class of distribution is analytically derived from the continuum limit of the discrete binary process with the renormalized auto-correlation and the closed form moment generating function is obtained, thus the cumulants are calculated and shown to be convergent. The other class of distributions are numerically investigated. The concoction of the two stochastic processes of the different signs of memory under regime switching mechanism does incarnate power-law decay behavior, which strongly implies that memory is the alternative origin of heavy-tail.
In this study, we construct two tests for the weights of the global minimum variance portfolio (GMVP) in a high-dimensional setting, namely, when the number of assets $p$ depends on the sample size $n$ such that $frac{p}{n}to c in (0,1)$ as $n$ tends
We test three common information criteria (IC) for selecting the order of a Hawkes process with an intensity kernel that can be expressed as a mixture of exponential terms. These processes find application in high-frequency financial data modelling.
We investigate the tail behaviour of the steady state distribution of a stochastic recursion that generalises Lindleys recursion. This recursion arises in queuing systems with dependent interarrival and service times, and includes alternating service
We derive consistent and asymptotically normal estimators for the drift and volatility parameters of the stochastic heat equation driven by an additive space-only white noise when the solution is sampled discretely in the physical domain. We consider
Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization by V. Koltchinskii [arXiv:0708.0083]