ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Poverty Mapping using Deep Reinforcement Learning

67   0   0.0 ( 0 )
 نشر من قبل Kumar Ayush
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The combination of high-resolution satellite imagery and machine learning have proven useful in many sustainability-related tasks, including poverty prediction, infrastructure measurement, and forest monitoring. However, the accuracy afforded by high-resolution imagery comes at a cost, as such imagery is extremely expensive to purchase at scale. This creates a substantial hurdle to the efficient scaling and widespread adoption of high-resolution-based approaches. To reduce acquisition costs while maintaining accuracy, we propose a reinforcement learning approach in which free low-resolution imagery is used to dynamically identify where to acquire costly high-resolution images, prior to performing a deep learning task on the high-resolution images. We apply this approach to the task of poverty prediction in Uganda, building on an earlier approach that used object detection to count objects and use these counts to predict poverty. Our approach exceeds previous performance benchmarks on this task while using 80% fewer high-resolution images. Our approach could have application in many sustainability domains that require high-resolution imagery.



قيم البحث

اقرأ أيضاً

Video is an essential imaging modality for diagnostics, e.g. in ultrasound imaging, for endoscopy, or movement assessment. However, video hasnt received a lot of attention in the medical image analysis community. In the clinical practice, it is chall enging to utilise raw diagnostic video data efficiently as video data takes a long time to process, annotate or audit. In this paper we introduce a novel, fully automatic video summarization method that is tailored to the needs of medical video data. Our approach is framed as reinforcement learning problem and produces agents focusing on the preservation of important diagnostic information. We evaluate our method on videos from fetal ultrasound screening, where commonly only a small amount of the recorded data is used diagnostically. We show that our method is superior to alternative video summarization methods and that it preserves essential information required by clinical diagnostic standards.
In this paper, we are tackling the proposal-free referring expression grounding task, aiming at localizing the target object according to a query sentence, without relying on off-the-shelf object proposals. Existing proposal-free methods employ a que ry-image matching branch to select the highest-score point in the image feature map as the target box center, with its width and height predicted by another branch. Such methods, however, fail to utilize the contextual relation between the target and reference objects, and lack interpretability on its reasoning procedure. To solve these problems, we propose an iterative shrinking mechanism to localize the target, where the shrinking direction is decided by a reinforcement learning agent, with all contents within the current image patch comprehensively considered. Beside, the sequential shrinking process enables to demonstrate the reasoning about how to iteratively find the target. Experiments show that the proposed method boosts the accuracy by 4.32% against the previous state-of-the-art (SOTA) method on the RefCOCOg dataset, where query sentences are long and complex, with many targets referred by other reference objects.
Modern tasks in reinforcement learning have large state and action spaces. To deal with them efficiently, one often uses predefined feature mapping to represent states and actions in a low-dimensional space. In this paper, we study reinforcement lear ning for discounted Markov Decision Processes (MDPs), where the transition kernel can be parameterized as a linear function of certain feature mapping. We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrt{T}/(1-gamma)^2)$ regret, where $d$ is the dimension of the feature space, $T$ is the time horizon and $gamma$ is the discount factor of the MDP. To the best of our knowledge, this is the first polynomial regret bound without accessing the generative model or making strong assumptions such as ergodicity of the MDP. By constructing a special class of MDPs, we also show that for any algorithms, the regret is lower bounded by $Omega(dsqrt{T}/(1-gamma)^{1.5})$. Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $(1-gamma)^{-0.5}$ factor.
Transfer Learning (TL) has shown great potential to accelerate Reinforcement Learning (RL) by leveraging prior knowledge from past learned policies of relevant tasks. Existing transfer approaches either explicitly computes the similarity between task s or select appropriate source policies to provide guided explorations for the target task. However, how to directly optimize the target policy by alternatively utilizing knowledge from appropriate source policies without explicitly measuring the similarity is currently missing. In this paper, we propose a novel Policy Transfer Framework (PTF) to accelerate RL by taking advantage of this idea. Our framework learns when and which source policy is the best to reuse for the target policy and when to terminate it by modeling multi-policy transfer as the option learning problem. PTF can be easily combined with existing deep RL approaches. Experimental results show it significantly accelerates the learning process and surpasses state-of-the-art policy transfer methods in terms of learning efficiency and final performance in both discrete and continuous action spaces.
Deep hashing methods have received much attention recently, which achieve promising results by taking advantage of the strong representation power of deep networks. However, most existing deep hashing methods learn a whole set of hashing functions in dependently, while ignore the correlations between different hashing functions that can promote the retrieval accuracy greatly. Inspired by the sequential decision ability of deep reinforcement learning, we propose a new Deep Reinforcement Learning approach for Image Hashing (DRLIH). Our proposed DRLIH approach models the hashing learning problem as a sequential decision process, which learns each hashing function by correcting the errors imposed by previous ones and promotes retrieval accuracy. To the best of our knowledge, this is the first work to address hashing problem from deep reinforcement learning perspective. The main contributions of our proposed DRLIH approach can be summarized as follows: (1) We propose a deep reinforcement learning hashing network. In the proposed network, we utilize recurrent neural network (RNN) as agents to model the hashing functions, which take actions of projecting images into binary codes sequentially, so that the current hashing function learning can take previous hashing functions error into account. (2) We propose a sequential learning strategy based on proposed DRLIH. We define the state as a tuple of internal features of RNNs hidden layers and image features, which can reflect history decisions made by the agents. We also propose an action group method to enhance the correlation of hash functions in the same group. Experiments on three widely-used datasets demonstrate the effectiveness of our proposed DRLIH approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا