ﻻ يوجد ملخص باللغة العربية
Deep hashing methods have received much attention recently, which achieve promising results by taking advantage of the strong representation power of deep networks. However, most existing deep hashing methods learn a whole set of hashing functions independently, while ignore the correlations between different hashing functions that can promote the retrieval accuracy greatly. Inspired by the sequential decision ability of deep reinforcement learning, we propose a new Deep Reinforcement Learning approach for Image Hashing (DRLIH). Our proposed DRLIH approach models the hashing learning problem as a sequential decision process, which learns each hashing function by correcting the errors imposed by previous ones and promotes retrieval accuracy. To the best of our knowledge, this is the first work to address hashing problem from deep reinforcement learning perspective. The main contributions of our proposed DRLIH approach can be summarized as follows: (1) We propose a deep reinforcement learning hashing network. In the proposed network, we utilize recurrent neural network (RNN) as agents to model the hashing functions, which take actions of projecting images into binary codes sequentially, so that the current hashing function learning can take previous hashing functions error into account. (2) We propose a sequential learning strategy based on proposed DRLIH. We define the state as a tuple of internal features of RNNs hidden layers and image features, which can reflect history decisions made by the agents. We also propose an action group method to enhance the correlation of hash functions in the same group. Experiments on three widely-used datasets demonstrate the effectiveness of our proposed DRLIH approach.
Hashing technology has been widely used in image retrieval due to its computational and storage efficiency. Recently, deep unsupervised hashing methods have attracted increasing attention due to the high cost of human annotations in the real world an
Recently it has shown that the policy-gradient methods for reinforcement learning have been utilized to train deep end-to-end systems on natural language processing tasks. Whats more, with the complexity of understanding image content and diverse way
Image hash algorithms generate compact binary representations that can be quickly matched by Hamming distance, thus become an efficient solution for large-scale image retrieval. This paper proposes RV-SSDH, a deep image hash algorithm that incorporat
Low-light image enhancement (LLIE) is a pervasive yet challenging problem, since: 1) low-light measurements may vary due to different imaging conditions in practice; 2) images can be enlightened subjectively according to diverse preferences by each i
With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of the