ترغب بنشر مسار تعليمي؟ اضغط هنا

A liquid nitrogen cooled superconducting transition edge sensor with ultra-high responsivity and GHz operation speeds

173   0   0.0 ( 0 )
 نشر من قبل Dmitri K. Efetov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photodetectors based on nano-structured superconducting thin films are currently some of the most sensitive quantum sensors and are key enabling technologies in such broad areas as quantum information, quantum computation and radio-astronomy. However, their broader use is held back by the low operation temperatures which require expensive cryostats. Here, we demonstrate a nitrogen cooled superconducting transition edge sensor, which shows orders of magnitude improved performance characteristics of any superconducting detector operated above 77K, with a responsivity of 9.61x10^4 V/W, noise equivalent power of 15.9 fW/Hz-1/2 and operation speeds up to GHz frequencies. It is based on van der Waals heterostructures of the high temperature superconductor Bi2Sr2CaCu2O8, which are shaped into nano-wires with ultra-small form factor. To highlight the versatility of the detector we demonstrate its fabrication and operation on a telecom grade SiN waveguide chip. Our detector significantly relaxes the demands of practical applications of superconducting detectors and displays its huge potential for photonics based quantum applications.



قيم البحث

اقرأ أيضاً

We describe a superconducting transition edge sensor based on a nanoscale niobium detector element. This device is predicted to be capable of energy-resolved near-IR single-photon detection with a GHz count rate. The increased speed and sensitivity o f this device compared to traditional transition edge sensors result from the very small electronic heat capacity of the nanoscale detector element. In the present work, we calculate the predicted thermal response time and energy resolution. We also discuss approaches for achieving efficient optical coupling to the sub-wavelength detector element using a resonant near-IR antenna.
Variable microwave-frequency couplers are highly useful components in classical communication systems, and likely will play an important role in quantum communication applications. Conventional semiconductor-based microwave couplers have been used wi th superconducting quantum circuits, enabling for example the in situ measurements of multiple devices via a common readout chain. However, the semiconducting elements are lossy, and furthermore dissipate energy when switched, making them unsuitable for cryogenic applications requiring rapid, repeated switching. Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching and are easily integrated with superconducting quantum circuits. These enable on-chip, quantum-coherent routing of microwave photons, providing an appealing alternative to semiconductor switches. Here, we present and characterize a chip-based broadband microwave variable coupler, tunable over 4-8 GHz with over 1.5 GHz instantaneous bandwidth, based on the superconducting quantum interference device (SQUID) with two parallel Josephson junctions. The coupler is dissipation-free, features large on-off ratios in excess of 40 dB, and the coupling can be changed in about 10 ns. The simple design presented here can be readily integrated with superconducting qubit circuits, and can be easily generalized to realize a four- or more port device.
A high Q-factor microwave resonator in a high magnetic field could be used in a wide range of applications, especially for enhancing the scanning speed in axion dark matter research. In this letter, we introduce a polygon-shaped resonant cavity with commercial YBCO tapes covering the entire inner wall. We demonstrated that the maximum Q-factor (TM$_{010}$, 6.93 GHz) of the superconducting YBCO cavity was about 6 times higher than that of a copper cavity and showed no significant degradation up to 8 T at 4 K. This is the first indication of the possible applications of HTS technology to the research areas requiring low loss in a strong magnetic field at high radio frequencies.
Developing compact, low-dissipation, cryogenic-compatible microwave electronics is essential for scaling up low-temperature quantum computing systems. In this paper, we demonstrate an ultra-compact microwave directional forward coupler based on high- impedance slow-wave superconducting-nanowire transmission lines. The coupling section of the fabricated device has a footprint of $416,mathrm{mu m^2}$. At 4.753 GHz, the input signal couples equally to the through port and forward-coupling port (50:50) at $-6.7,mathrm{dB}$ with $-13.5,mathrm{dB}$ isolation. The coupling ratio can be controlled with DC bias current or temperature by exploiting the dependence of the kinetic inductance on these quantities. The material and fabrication-process are suitable for direct integration with superconducting circuits, providing a practical solution to the signal distribution bottlenecks in developing large-scale quantum computers.
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy and quantum control of mechanical oscillators via opto- and electromechanics. The mechanical quality factor ($Q$) of these systems determines the thermomechanical force noise and the thermal decoherence rate of mechanical quantum states. While the dissipation rate is typically set by the bulk acoustic properties of the material, by exploiting dissipation dilution, mechanical $Q$ can be engineered through geometry and increased by many orders of magnitude. Recently, soft clamping in combination with strain engineering has enabled room temperature quality factors approaching one billion ($10^9$) in millimeter-scale resonators. Here we demonstrate a new approach to soft clamping which exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices. In contrast to previous approaches, which rely on cascaded elements to achieve soft clamping, perimeter modes are soft clamped due to symmetry and the boundary conditions at the polygon vertices. Perimeter modes reach $Q$ of 3.6 billion at room temperature while spanning only two acoustic wavelengths---a 4-fold improvement over the state-of-the-art mechanical $Q$ with 10-fold smaller devices. The small size of our devices makes them well-suited for near-field integration with microcavities for quantum optomechanical experiments. Moreover, their compactness allows the realization of phononic lattices. We demonstrate a one-dimensional Su-Schrieffer-Heeger chain of high-$Q$ perimeter modes coupled via nearest-neighbour interaction and characterize the localized edge modes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا