ترغب بنشر مسار تعليمي؟ اضغط هنا

Proposal for a GHz count rate near-IR single-photon detector based on a nanoscale superconducting transition edge sensor

215   0   0.0 ( 0 )
 نشر من قبل Daniel Santavicca
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a superconducting transition edge sensor based on a nanoscale niobium detector element. This device is predicted to be capable of energy-resolved near-IR single-photon detection with a GHz count rate. The increased speed and sensitivity of this device compared to traditional transition edge sensors result from the very small electronic heat capacity of the nanoscale detector element. In the present work, we calculate the predicted thermal response time and energy resolution. We also discuss approaches for achieving efficient optical coupling to the sub-wavelength detector element using a resonant near-IR antenna.



قيم البحث

اقرأ أيضاً

66 - X. Zhang , Q. Wang , 2016
We fabricated a superconducting single X-ray photon detector based on W0.8Si0.2, and we characterized its basic detection performance for keV-photons at different temperatures. The detector has a critical temperature of 4.97 K, and it is able to be o perated up to 4.8 K, just below the critical temperature. The detector starts to react to X-ray photons at relatively low bias currents, less than 1% of Ic at T = 1.8 K, and it shows a saturated count rate dependence on bias current at all temperatures, indicating that the optimum internal quantum efficiency can always be reached. Dark counts are negligible up to the highest investigated bias currents (99% of Ic) and operating temperature (4.8 K). The latching effect affects the detector performance at all temperatures due to the fast recovery of the bias current; however, further modifications of the device geometry are expected to reduce the tendency for latching.
Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to la rge numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a 16-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon coincidence events in a 4-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.
Improving the temporal resolution of single photon detectors has an impact on many applications, such as increased data rates and transmission distances for both classical and quantum optical communication systems, higher spatial resolution in laser ranging and observation of shorter-lived fluorophores in biomedical imaging. In recent years, superconducting nanowire single-photon detectors (SNSPDs) have emerged as the highest efficiency time-resolving single-photon counting detectors available in the near infrared. As the detection mechanism in SNSPDs occurs on picosecond time scales, SNSPDs have been demonstrated with exquisite temporal resolution below 15 ps. We reduce this value to 2.7$pm$0.2 ps at 400 nm and 4.6$pm$0.2 ps at 1550 nm, using a specialized niobium nitride (NbN) SNSPD. The observed photon-energy dependence of the temporal resolution and detection latency suggests that intrinsic effects make a significant contribution.
We demonstrate a 16-pixel array of radio-frequency superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, reducing the required bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements we also demonstrate the operation of the 16-pixel array with a temporal, spatial and photon-number resolution.
The concept of the radio-frequency superconducting nanowire single-photon detector (RF-SNSPD) allows frequency-division multiplexing (FDM) of the bias and readout lines of several SNSPDs. Using this method, a multi-pixel array can be operated by only one feed line. Consequently, the system complexity as well as the heat load is significantly reduced. To allocate many pixels into a small bandwidth the quality factor of each device is crucial. In this paper, we present an improved RF-SNSPD design. This new design enables a simple tuning of the quality factor as well as the resonant frequency. With a two-pixel device we have demonstrated the operation without crosstalk between the detectors and showed the time, spatial and photon number resolution. Thereby a single pixel requires only a bandwidth of 14 MHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا