ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of COVID-19 on Flight Networks

419   0   0.0 ( 0 )
 نشر من قبل Hiroki Kanezashi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As COVID-19 transmissions spread worldwide, governments have announced and enforced travel restrictions to prevent further infections. Such restrictions have a direct effect on the volume of international flights among these countries, resulting in extensive social and economic costs. To better understand the situation in a quantitative manner, we used the Opensky network data to clarify flight patterns and flight densities around the world and observe relationships between flight numbers with new infections, and with the economy (unemployment rate) in Barcelona. We found that the number of daily flights gradually decreased and suddenly dropped 64% during the second half of March in 2020 after the US and Europe enacted travel restrictions. We also observed a 51% decrease in the global flight network density decreased during this period. Regarding new COVID-19 cases, the world had an unexpected surge regardless of travel restrictions. Finally, the layoffs for temporary workers in the tourism and airplane business increased by 4.3 fold in the weeks following Spains decision to close its borders.



قيم البحث

اقرأ أيضاً

This paper aims at providing the summary of the Global Data Science Project (GDSC) for COVID-19. as on May 31 2020. COVID-19 has largely impacted on our societies through both direct and indirect effects transmitted by the policy measures to counter the spread of viruses. We quantitatively analysed the multifaceted impacts of the COVID-19 pandemic on our societies including peoples mobility, health, and social behaviour changes. Peoples mobility has changed significantly due to the implementation of travel restriction and quarantine measurements. Indeed, the physical distance has widened at international (cross-border), national and regional level. At international level, due to the travel restrictions, the number of international flights has plunged overall at around 88 percent during March. In particular, the number of flights connecting Europe dropped drastically in mid of March after the United States announced travel restrictions to Europe and the EU and participating countries agreed to close borders, at 84 percent decline compared to March 10th. Similarly, we examined the impacts of quarantine measures in the major city: Tokyo (Japan), New York City (the United States), and Barcelona (Spain). Within all three cities, we found the significant decline in traffic volume. We also identified the increased concern for mental health through the analysis of posts on social networking services such as Twitter and Instagram. Notably, in the beginning of April 2020, the number of post with #depression on Instagram doubled, which might reflect the rise in mental health awareness among Instagram users. Besides, we identified the changes in a wide range of peoples social behaviors, as well as economic impacts through the analysis of Instagram data and primary survey data.
We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction numbers $R_0$ for each social media platform. Moreover, we characterize information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors amplification.
Publish or perish is an expression describing the pressure on academics to consistently publish research to ensure a successful career in academia. With a global pandemic that has changed the world, how has it changed academic productivity? Here we s how that academics are posting just as many publications on the arXiv pre-print server as if there were no pandemic: 168,630 were posted in 2020, a +12.6% change from 2019 and $+1.4sigma$ deviation above the predicted 162,577 $pm$ 4,393. However, some immediate impacts are visible in individual research fields. Conference cancellations have led to sharp drops in pre-prints, but laboratory closures have had mixed effects. Only some experimental fields show mild declines in outputs, with most being consistent on previous years or even increasing above model expectations. The most significant change is a 50% increase ($+8sigma$) in quantitative biology research, all related to the COVID-19 pandemic. Some of these publications are by biologists using arXiv for the first time, and some are written by researchers from other fields (e.g., physicists, mathematicians). While quantitative biology pre-prints have returned to pre-pandemic levels, 20% of the research in this field is now focussed on the COVID-19 pandemic, demonstrating a strong shift in research focus.
With the severity of the COVID-19 outbreak, we characterize the nature of the growth trajectories of counties in the United States using a novel combination of spectral clustering and the correlation matrix. As the U.S. and the rest of the world are experiencing a severe second wave of infections, the importance of assigning growth membership to counties and understanding the determinants of the growth are increasingly evident. Subsequently, we select the demographic features that are most statistically significant in distinguishing the communities. Lastly, we effectively predict the future growth of a given county with an LSTM using three social distancing scores. This comprehensive study captures the nature of counties growth in cases at a very micro-level using growth communities, demographic factors, and social distancing performance to help government agencies utilize known information to make appropriate decisions regarding which potential counties to target resources and funding to.
COVID-19s impact has surpassed from personal and global health to our social life. In terms of digital presence, it is speculated that during pandemic, there has been a significant rise in cyberbullying. In this paper, we have examined the hypothesis of whether cyberbullying and reporting of such incidents have increased in recent times. To evaluate the speculations, we collected cyberbullying related public tweets (N=454,046) posted between January 1st, 2020 -- June 7th, 2020. A simple visual frequentist analysis ignores serial correlation and does not depict changepoints as such. To address correlation and a relatively small number of time points, Bayesian estimation of the trends is proposed for the collected data via an autoregressive Poisson model. We show that this new Bayesian method detailed in this paper can clearly show the upward trend on cyberbullying-related tweets since mid-March 2020. However, this evidence itself does not signify a rise in cyberbullying but shows a correlation of the crisis with the discussion of such incidents by individuals. Our work emphasizes a critical issue of cyberbullying and how a global crisis impacts social media abuse and provides a trend analysis model that can be utilized for social media data analysis in general.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا