ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of the COVID-19 pandemic on academic productivity

329   0   0.0 ( 0 )
 نشر من قبل Andrew Casey
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Publish or perish is an expression describing the pressure on academics to consistently publish research to ensure a successful career in academia. With a global pandemic that has changed the world, how has it changed academic productivity? Here we show that academics are posting just as many publications on the arXiv pre-print server as if there were no pandemic: 168,630 were posted in 2020, a +12.6% change from 2019 and $+1.4sigma$ deviation above the predicted 162,577 $pm$ 4,393. However, some immediate impacts are visible in individual research fields. Conference cancellations have led to sharp drops in pre-prints, but laboratory closures have had mixed effects. Only some experimental fields show mild declines in outputs, with most being consistent on previous years or even increasing above model expectations. The most significant change is a 50% increase ($+8sigma$) in quantitative biology research, all related to the COVID-19 pandemic. Some of these publications are by biologists using arXiv for the first time, and some are written by researchers from other fields (e.g., physicists, mathematicians). While quantitative biology pre-prints have returned to pre-pandemic levels, 20% of the research in this field is now focussed on the COVID-19 pandemic, demonstrating a strong shift in research focus.

قيم البحث

اقرأ أيضاً

We study the disproportionate impact of the lockdown as a result of the COVID-19 outbreak on female and male academics research productivity in social science. The lockdown has caused substantial disruptions to academic activities, requiring people t o work from home. How this disruption affects productivity and the related gender equity is an important operations and societal question. We collect data from the largest open-access preprint repository for social science on 41,858 research preprints in 18 disciplines produced by 76,832 authors across 25 countries over a span of two years. We use a difference-in-differences approach leveraging the exogenous pandemic shock. Our results indicate that, in the 10 weeks after the lockdown in the United States, although the total research productivity increased by 35%, female academics productivity dropped by 13.9% relative to that of male academics. We also show that several disciplines drive such gender inequality. Finally, we find that this intensified productivity gap is more pronounced for academics in top-ranked universities, and the effect exists in six other countries. Our work points out the fairness issue in productivity caused by the lockdown, a finding that universities will find helpful when evaluating faculty productivity. It also helps organizations realize the potential unintended consequences that can arise from telecommuting.
In the first half of 2020, several countries have responded to the challenges posed by the Covid-19 pandemic by restricting their export of medical supplies. Such measures are meant to increase the domestic availability of critical goods, and are com monly used in times of crisis. Yet, not much is known about their impact, especially on countries imposing them. Here we show that export bans are, by and large, counterproductive. Using a model of shock diffusion through the network of international trade, we simulate the impact of restrictions under different scenarios. We observe that while they would be beneficial to a country implementing them in isolation, their generalized use makes most countries worse off relative to a no-ban scenario. As a corollary, we estimate that prices increase in many countries imposing the restrictions. We also find that the cost of restraining from export bans is small, even when others continue to implement them. Finally, we document a change in countries position within the international trade network, suggesting that export bans have geopolitical implications.
The COVID-19 pandemic has disrupted human activities, leading to unprecedented decreases in both global energy demand and GHG emissions. Yet a little known that there is also a low carbon shift of the global energy system in 2020. Here, using the nea r-real-time data on energy-related GHG emissions from 30 countries (about 70% of global power generation), we show that the pandemic caused an unprecedented de-carbonization of global power system, representing by a dramatic decrease in the carbon intensity of power sector that reached a historical low of 414.9 tCO2eq/GWh in 2020. Moreover, the share of energy derived from renewable and low-carbon sources (nuclear, hydro-energy, wind, solar, geothermal, and biomass) exceeded that from coal and oil for the first time in history in May of 2020. The decrease in global net energy demand (-1.3% in the first half of 2020 relative to the average of the period in 2016-2019) masks a large down-regulation of fossil-fuel-burning power plants supply (-6.1%) coincident with a surge of low-carbon sources (+6.2%). Concomitant changes in the diurnal cycle of electricity demand also favored low-carbon generators, including a flattening of the morning ramp, a lower midday peak, and delays in both the morning and midday load peaks in most countries. However, emission intensities in the power sector have since rebounded in many countries, and a key question for climate mitigation is thus to what extent countries can achieve and maintain lower, pandemic-level carbon intensities of electricity as part of a green recovery.
As COVID-19 transmissions spread worldwide, governments have announced and enforced travel restrictions to prevent further infections. Such restrictions have a direct effect on the volume of international flights among these countries, resulting in e xtensive social and economic costs. To better understand the situation in a quantitative manner, we used the Opensky network data to clarify flight patterns and flight densities around the world and observe relationships between flight numbers with new infections, and with the economy (unemployment rate) in Barcelona. We found that the number of daily flights gradually decreased and suddenly dropped 64% during the second half of March in 2020 after the US and Europe enacted travel restrictions. We also observed a 51% decrease in the global flight network density decreased during this period. Regarding new COVID-19 cases, the world had an unexpected surge regardless of travel restrictions. Finally, the layoffs for temporary workers in the tourism and airplane business increased by 4.3 fold in the weeks following Spains decision to close its borders.
In late-2020, many countries around the world faced another surge in number of confirmed cases of COVID-19, including United Kingdom, Canada, Brazil, United States, etc., which resulted in a large nationwide and even worldwide wave. While there have been indications that precaution fatigue could be a key factor, no scientific evidence has been provided so far. We used a stochastic metapopulation model with a hierarchical structure and fitted the model to the positive cases in the US from the start of outbreak to the end of 2020. We incorporated non-pharmaceutical interventions (NPIs) into this model by assuming that the precaution strength grows with positive cases and studied two types of pandemic fatigue. We found that people in most states and in the whole US respond to the outbreak in a sublinear manner (with exponent k=0.5), while only three states (Massachusetts, New York and New Jersey) have linear reaction (k=1). Case fatigue (decline in peoples vigilance to positive cases) is responsible for 58% of cases, while precaution fatigue (decay of maximal fraction of vigilant group) accounts for 26% cases. If there were no pandemic fatigue (no case fatigue and no precaution fatigue), total positive cases would have reduced by 68% on average. Our study shows that pandemic fatigue is the major cause of the worsening situation of COVID-19 in United States. Reduced vigilance is responsible for most positive cases, and higher mortality rate tends to push local people to react to the outbreak faster and maintain vigilant for longer time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا