ﻻ يوجد ملخص باللغة العربية
Topological data analysis (TDA) allows us to explore the topological features of a dataset. Among topological features, lower dimensional ones have recently drawn the attention of practitioners in mathematics and statistics due to their potential to aid the discovery of low dimensional structure in a data set. However, lower dimensional features are usually challenging to detect from a probabilistic perspective. In this paper, lower dimensional topological features occurring as zero-density regions of density functions are introduced and thoroughly investigated. Specifically, we consider sequences of coverings for the support of a density function in which the coverings are comprised of balls with shrinking radii. We show that, when these coverings satisfy certain sufficient conditions as the sample size goes to infinity, we can detect lower dimensional, zero-density regions with increasingly higher probability while guarding against false detection. We supplement the theoretical developments with the discussion of simulated experiments that elucidate the behavior of the methodology for different choices of the tuning parameters that govern the construction of the covering sequences and characterize the asymptotic results.
In model selection, several types of cross-validation are commonly used and many variants have been introduced. While consistency of some of these methods has been proven, their rate of convergence to the oracle is generally still unknown. Until now,
Sample correlation matrices are employed ubiquitously in statistics. However, quite surprisingly, little is known about their asymptotic spectral properties for high-dimensional data, particularly beyond the case of null models for which the data is
We obtain an asymptotic expansion for the null distribution function of thegradient statistic for testing composite null hypotheses in the presence of nuisance parameters. The expansion is derived using a Bayesian route based on the shrinkage argumen
In this paper, we use the class of Wasserstein metrics to study asymptotic properties of posterior distributions. Our first goal is to provide sufficient conditions for posterior consistency. In addition to the well-known Schwartzs Kullback--Leibler
In this paper, we apply doubly robust approach to estimate, when some covariates are given, the conditional average treatment effect under parametric, semiparametric and nonparametric structure of the nuisance propensity score and outcome regression