ﻻ يوجد ملخص باللغة العربية
In model selection, several types of cross-validation are commonly used and many variants have been introduced. While consistency of some of these methods has been proven, their rate of convergence to the oracle is generally still unknown. Until now, an asymptotic analysis of crossvalidation able to answer this question has been lacking. Existing results focus on the pointwise estimation of the risk of a single estimator, whereas analysing model selection requires understanding how the CV risk varies with the model. In this article, we investigate the asymptotics of the CV risk in the neighbourhood of the optimal model, for trigonometric series estimators in density estimation. Asymptotically, simple validation and incomplete V --fold CV behave like the sum of a convex function fn and a symmetrized Brownian changed in time W gn/V. We argue that this is the right asymptotic framework for studying model selection.
The asymptotic optimality (a.o.) of various hyper-parameter estimators with different optimality criteria has been studied in the literature for regularized least squares regression problems. The estimators include e.g., the maximum (marginal) likeli
We analyze the performance of cross-validation (CV) in the density estimation framework with two purposes: (i) risk estimation and (ii) model selection. The main focus is given to the so-called leave-$p$-out CV procedure (Lpo), where $p$ denotes the
In this article, by using composite asymmetric least squares (CALS) and empirical likelihood, we propose a two-step procedure to estimate the conditional value at risk (VaR) and conditional expected shortfall (ES) for the GARCH series. First, we perf
We study the problem of exact support recovery based on noisy observations and present Refined Least Squares (RLS). Given a set of noisy measurement $$ myvec{y} = myvec{X}myvec{theta}^* + myvec{omega},$$ and $myvec{X} in mathbb{R}^{N times D}$ which
We study the asymptotic properties of the SCAD-penalized least squares estimator in sparse, high-dimensional, linear regression models when the number of covariates may increase with the sample size. We are particularly interested in the use of this