ﻻ يوجد ملخص باللغة العربية
We obtain an asymptotic expansion for the null distribution function of thegradient statistic for testing composite null hypotheses in the presence of nuisance parameters. The expansion is derived using a Bayesian route based on the shrinkage argument described in Ghosh and Mukerjee (1991). Using this expansion, we propose a Bartlett-type corrected gradient statistic with chi-square distribution up to an error of order o(n^{-1}) under the null hypothesis. Further, we also use the expansion to modify the percentage points of the large sample reference chi-square distribution. A small Monte Carlo experiment and various examples are presented and discussed.
We consider the problem of detecting a sparse mixture as studied by Ingster (1997) and Donoho and Jin (2004). We consider a wide array of base distributions. In particular, we study the situation when the base distribution has polynomial tails, a sit
A new (unadjusted) Langevin Monte Carlo (LMC) algorithm with improved rates in total variation and in Wasserstein distance is presented. All these are obtained in the context of sampling from a target distribution $pi$ that has a density $hat{pi}$ on
We give the asymptotic behavior of the Mann-Whitney U-statistic for two independent stationary sequences. The result applies to a large class of short-range dependent sequences, including many non-mixing processes in the sense of Rosenblatt. We also
Topological data analysis (TDA) allows us to explore the topological features of a dataset. Among topological features, lower dimensional ones have recently drawn the attention of practitioners in mathematics and statistics due to their potential to
In this paper, we use the class of Wasserstein metrics to study asymptotic properties of posterior distributions. Our first goal is to provide sufficient conditions for posterior consistency. In addition to the well-known Schwartzs Kullback--Leibler