ﻻ يوجد ملخص باللغة العربية
We study the orbital diamagnetic susceptibility in excitonic condensation phase using the meanfield approximation for a two-band model defined on a square lattice. We find that, in semiconductors, the excitonic condensation acquires a finite diamagnetic susceptibility due to spontaneous hybridization between the valence and the conduction bands, whereas in semimetals, the diamagnetic susceptibility in the normal phase is suppressed by the excitonic condensation. We also study the orbital diamagnetic and Pauli paramagnetic susceptibilities of Ta2NiSe5 using a two-dimensional three-band model and find that the calculated temperature dependence of the magnetic susceptibility is in qualitative agreement with experiment.
The idea of exciton condensation in solids was introduced in 1960s with the analogy to superconductivity in mind. While exciton supercurrents have been realized only in artificial quantum-well structures so far, the application of the concept of exci
We show that finite temperature variational cluster approximation (VCA) calculations on an extended Falicov-Kimball model can reproduce angle-resolved photoemission spectroscopy (ARPES) results on Ta2NiSe5 across a semiconductor-to-semiconductor stru
We consider a two-orbital Hubbard model with Hund coupling and crystal-field splitting and show that in the vicinity of the high-spin/low-spin transition, crystal-field quenches can induce an excitonic condensation at initial temperatures above the h
We study the excitonic insulating (EI) phase in the two-band Hubbard models on the Penrose tiling. Performing the real-space mean-field calculations systematically, we obtain the ground state phase diagrams for the vertex and center models. We find t
The microscopic quantum interference associated with excitonic condensation in Ta$_2$NiSe$_5$ is studied in the BCS-type mean-field approximation. We show that in ultrasonic attenuation the coherence peak appears just below the transition temperature