ﻻ يوجد ملخص باللغة العربية
We study a document retrieval problem in the new framework where $D$ text documents are organized in a {em category tree} with a pre-defined number $h$ of categories. This situation occurs e.g. with taxomonic trees in biology or subject classification systems for scientific literature. Given a string pattern $p$ and a category (level in the category tree), we wish to efficiently retrieve the $t$ emph{categorical units} containing this pattern and belonging to the category. We propose several efficient solutions for this problem. One of them uses $n(logsigma(1+o(1))+log D+O(h)) + O(Delta)$ bits of space and $O(|p|+t)$ query time, where $n$ is the total length of the documents, $sigma$ the size of the alphabet used in the documents and $Delta$ is the total number of nodes in the category tree. Another solution uses $n(logsigma(1+o(1))+O(log D))+O(Delta)+O(Dlog n)$ bits of space and $O(|p|+tlog D)$ query time. We finally propose other solutions which are more space-efficient at the expense of a slight increase in query time.
It is an open question whether there exists a polynomial-time algorithm for computing the rotation distances between pairs of extended ordered binary trees. The problem of computing the rotation distance between an arbitrary pair of trees, (S, T), ca
Locality Sensitive Hashing (LSH) is an effective method of indexing a set of items to support efficient nearest neighbors queries in high-dimensional spaces. The basic idea of LSH is that similar items should produce hash collisions with higher proba
The seminal work of Chow and Liu (1968) shows that approximation of a finite probabilistic system by Markov trees can achieve the minimum information loss with the topology of a maximum spanning tree. Our current paper generalizes the result to Marko
Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, t
Phase retrieval (PR), also sometimes referred to as quadratic sensing, is a problem that occurs in numerous signal and image acquisition domains ranging from optics, X-ray crystallography, Fourier ptychography, sub-diffraction imaging, and astronomy.