ﻻ يوجد ملخص باللغة العربية
The seminal work of Chow and Liu (1968) shows that approximation of a finite probabilistic system by Markov trees can achieve the minimum information loss with the topology of a maximum spanning tree. Our current paper generalizes the result to Markov networks of tree width $leq k$, for every fixed $kgeq 2$. In particular, we prove that approximation of a finite probabilistic system with such Markov networks has the minimum information loss when the network topology is achieved with a maximum spanning $k$-tree. While constructing a maximum spanning $k$-tree is intractable for even $k=2$, we show that polynomial algorithms can be ensured by a sufficient condition accommodated by many meaningful applications. In particular, we prove an efficient algorithm for learning the optimal topology of higher order correlations among random variables that belong to an underlying linear structure.
The performance of distributed and data-centric applications often critically depends on the interconnecting network. Applications are hence modeled as virtual networks, also accounting for resource demands on links. At the heart of provisioning such
This paper provides an optimized cable path planning solution for a tree-topology network in an irregular 2D manifold in a 3D Euclidean space, with an application to the planning of submarine cable networks. Our solution method is based on total cost
k-means is a widely used clustering algorithm, but for $k$ clusters and a dataset size of $N$, each iteration of Lloyds algorithm costs $O(kN)$ time. Although there are existing techniques to accelerate single Lloyd iterations, none of these are tail
We study a document retrieval problem in the new framework where $D$ text documents are organized in a {em category tree} with a pre-defined number $h$ of categories. This situation occurs e.g. with taxomonic trees in biology or subject classificatio
It is an open question whether there exists a polynomial-time algorithm for computing the rotation distances between pairs of extended ordered binary trees. The problem of computing the rotation distance between an arbitrary pair of trees, (S, T), ca