ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Neural Networks

130   0   0.0 ( 0 )
 نشر من قبل Tom Charnock
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent times, neural networks have become a powerful tool for the analysis of complex and abstract data models. However, their introduction intrinsically increases our uncertainty about which features of the analysis are model-related and which are due to the neural network. This means that predictions by neural networks have biases which cannot be trivially distinguished from being due to the true nature of the creation and observation of data or not. In order to attempt to address such issues we discuss Bayesian neural networks: neural networks where the uncertainty due to the network can be characterised. In particular, we present the Bayesian statistical framework which allows us to categorise uncertainty in terms of the ingrained randomness of observing certain data and the uncertainty from our lack of knowledge about how data can be created and observed. In presenting such techniques we show how errors in prediction by neural networks can be obtained in principle, and provide the two favoured methods for characterising these errors. We will also describe how both of these methods have substantial pitfalls when put into practice, highlighting the need for other statistical techniques to truly be able to do inference when using neural networks.



قيم البحث

اقرأ أيضاً

We recapitulate the Bayesian formulation of neural network based classifiers and show that, while sampling from the posterior does indeed lead to better generalisation than is obtained by standard optimisation of the cost function, even better perfor mance can in general be achieved by sampling finite temperature ($T$) distributions derived from the posterior. Taking the example of two different deep (3 hidden layers) classifiers for MNIST data, we find quite different $T$ values to be appropriate in each case. In particular, for a typical neural network classifier a clear minimum of the test error is observed at $T>0$. This suggests an early stopping criterion for full batch simulated annealing: cool until the average validation error starts to increase, then revert to the parameters with the lowest validation error. As $T$ is increased classifiers transition from accurate classifiers to classifiers that have higher training error than assigning equal probability to each class. Efficient studies of these temperature-induced effects are enabled using a replica-exchange Hamiltonian Monte Carlo simulation technique. Finally, we show how thermodynamic integration can be used to perform model selection for deep neural networks. Similar to the Laplace approximation, this approach assumes that the posterior is dominated by a single mode. Crucially, however, no assumption is made about the shape of that mode and it is not required to precisely compute and invert the Hessian.
We conduct a thorough analysis of the relationship between the out-of-sample performance and the Bayesian evidence (marginal likelihood) of Bayesian neural networks (BNNs), as well as looking at the performance of ensembles of BNNs, both using the Bo ston housing dataset. Using the state-of-the-art in nested sampling, we numerically sample the full (non-Gaussian and multimodal) network posterior and obtain numerical estimates of the Bayesian evidence, considering network models with up to 156 trainable parameters. The networks have between zero and four hidden layers, either $tanh$ or $ReLU$ activation functions, and with and without hierarchical priors. The ensembles of BNNs are obtained by determining the posterior distribution over networks, from the posterior samples of individual BNNs re-weighted by the associated Bayesian evidence values. There is good correlation between out-of-sample performance and evidence, as well as a remarkable symmetry between the evidence versus model size and out-of-sample performance versus model size planes. Networks with $ReLU$ activation functions have consistently higher evidences than those with $tanh$ functions, and this is reflected in their out-of-sample performance. Ensembling over architectures acts to further improve performance relative to the individual BNNs.
The motivations for using variational inference (VI) in neural networks differ significantly from those in latent variable models. This has a counter-intuitive consequence; more expressive variational approximations can provide significantly worse pr edictions as compared to those with less expressive families. In this work we make two contributions. First, we identify a cause of this performance gap, variational over-pruning. Second, we introduce a theoretically grounded explanation for this phenomenon. Our perspective sheds light on several related published results and provides intuition into the design of effective variational approximations of neural networks.
We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational La place objective is simple to evaluate, as it is (in essence) the log-likelihood, plus weight-decay, plus a squared-gradient regularizer. Variational Laplace gave better test performance and expected calibration errors than maximum a-posteriori inference and standard sampling-based variational inference, despite using the same variational approximate posterior. Finally, we emphasise care needed in benchmarking standard VI as there is a risk of stopping before the variance parameters have converged. We show that early-stopping can be avoided by increasing the learning rate for the variance parameters.
In federated learning problems, data is scattered across different servers and exchanging or pooling it is often impractical or prohibited. We develop a Bayesian nonparametric framework for federated learning with neural networks. Each data server is assumed to provide local neural network weights, which are modeled through our framework. We then develop an inference approach that allows us to synthesize a more expressive global network without additional supervision, data pooling and with as few as a single communication round. We then demonstrate the efficacy of our approach on federated learning problems simulated from two popular image classification datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا