ﻻ يوجد ملخص باللغة العربية
The motivations for using variational inference (VI) in neural networks differ significantly from those in latent variable models. This has a counter-intuitive consequence; more expressive variational approximations can provide significantly worse predictions as compared to those with less expressive families. In this work we make two contributions. First, we identify a cause of this performance gap, variational over-pruning. Second, we introduce a theoretically grounded explanation for this phenomenon. Our perspective sheds light on several related published results and provides intuition into the design of effective variational approximations of neural networks.
We develop variational Laplace for Bayesian neural networks (BNNs) which exploits a local approximation of the curvature of the likelihood to estimate the ELBO without the need for stochastic sampling of the neural-network weights. The Variational La
Bayesian Neural Networks (BNNs) have recently received increasing attention for their ability to provide well-calibrated posterior uncertainties. However, model selection---even choosing the number of nodes---remains an open question. Recent work has
In recent times, neural networks have become a powerful tool for the analysis of complex and abstract data models. However, their introduction intrinsically increases our uncertainty about which features of the analysis are model-related and which ar
Variational Bayesian neural networks (BNNs) perform variational inference over weights, but it is difficult to specify meaningful priors and approximate posteriors in a high-dimensional weight space. We introduce functional variational Bayesian neura
We conduct a thorough analysis of the relationship between the out-of-sample performance and the Bayesian evidence (marginal likelihood) of Bayesian neural networks (BNNs), as well as looking at the performance of ensembles of BNNs, both using the Bo