ترغب بنشر مسار تعليمي؟ اضغط هنا

New point-like sources and a conducting surface in Maxwell-Chern-Simons electrodynamics

242   0   0.0 ( 0 )
 نشر من قبل Fabricio Augusto Barone Rangel PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate some aspects of the Maxwell-Chern-Simons electrodynamics focusing on physical effects produced by the presence of stationary sources and a perfectly conducting plate (mirror). Specifically, in addition to point charges, we propose two new types of point-like sources called topological source and Dirac point, and we also consider physical effects in various configurations that involve them. We show that the Dirac point is the source of the vortex field configurations. The propagator of the gauge field due to the presence of a conducting plate and the interaction forces between the plate and point-like sources are computed. It is shown that the image method is valid for the point-like charges as well as for Dirac points. For the topological source we show that the image method is not valid and the symmetry of spatial refection on the mirror is broken. In all setups considered, it is shown that the topological source leads to the emergence of torques.

قيم البحث

اقرأ أيضاً

The Maxwell-Chern-Simons gauge theory with charged scalar fields is analyzed at two loop level. The effective potential for the scalar fields is derived in the closed form, and studied both analytically and numerically. It is shown that the U(1) symm etry is spontaneously broken in the massless scalar theory. Dimensional transmutation takes place in the Coleman-Weinberg limit in which the Maxwell term vanishes. We point out the subtlety in defining the pure Chern-Simons scalar electrodynamics and show that the Coleman-Weinberg limit must be taken after renormalization. Renormalization group analysis of the effective potential is also given at two loop.
116 - R. Lehnert , R. Potting 2005
We study the Cherenkov effect in the context of the Maxwell-Chern-Simons (MCS) limit of the Standard Model Extension. We present a method to determine the exact radiation rate for a point charge.
270 - O.F. Dayi 2003
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der ived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.
The Lee-Wick electrodynamics in the vicinity of a conducting plate is investigated. The propagator for the gauge field is calculated and the interaction between the plate and a point-like electric charge is computed. The boundary condition imposed on the vector field is taken to be the one that vanishes, on the plate, the normal component of the dual field strength to the plate. It is shown that the image method is not valid in Lee-Wick electrodynamics.
We examine the energetics of $Q$-balls in Maxwell-Chern-Simons theory in two space dimensions. Whereas gauged $Q$-balls are unallowed in this dimension in the absence of a Chern-Simons term due to a divergent electromagnetic energy, the addition of a Chern-Simons term introduces a gauge field mass and renders finite the otherwise-divergent electromagnetic energy of the $Q$-ball. Similar to the case of gauged $Q$-balls, Maxwell-Chern-Simons $Q$-balls have a maximal charge. The properties of these solitons are studied as a function of the parameters of the model considered, using a numerical technique known as relaxation. The results are compared to expectations based on qualitative arguments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا