ترغب بنشر مسار تعليمي؟ اضغط هنا

Bremsstrahlung in GRMHD models of accreting black holes

91   0   0.0 ( 0 )
 نشر من قبل Ricardo Yarza
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Yarza




اسأل ChatGPT حول البحث

The role of bremsstrahlung in the emission from hot accretion flows around slowly accreting supermassive black holes is not thoroughly understood. In order to appraise the importance of bremsstrahlung relative to other radiative processes, we compute spectral energy distributions (SEDs) of accretion disks around slowly accreting supermassive black holes including synchrotron radiation, inverse Compton scattering, and bremsstrahlung. We compute SEDs for (i) four axisymmetric radiative general relativistic magnetohydrodynamics (RadGRMHD) simulations of $10^{8}M_{odot}$ black holes with accretion rates between $10^{-8}dot{M}_{text{Edd}}$ and $10^{-5}dot{M}_{text{Edd}}$, (ii) four axisymmetric RadGRMHD simulations of M87$^ast$ with varying dimensionless spin $a_ast$ and black hole mass, and (iii) a 3D GRMHD simulation scaled for Sgr A$^ast$. At $10^{-8}dot{M}_{text{Edd}}$, most of the luminosity is synchrotron radiation, while at $10^{-5}dot{M}_{text{Edd}}$ the three radiative processes have similar luminosities. In most models, bremsstrahlung dominates the SED near $512text{ keV}$. In the M87$^ast$ models, bremsstrahlung dominates this part of the SED if $a_{ast} = 0.5$, but inverse Compton scattering dominates if $a_{ast}= 0.9375$. Since scattering is more variable than bremsstrahlung, this result suggests that $512text{ keV}$ variability could be a diagnostic of black hole spin. In the appendix, we compare some bremsstrahlung formulae found in the literature.



قيم البحث

اقرأ أيضاً

I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole ac cretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.
A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accr eting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the X-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit (ISCO), whose radius depends only on the mass and spin of the black hole. In the Fe K method, which applies to both classes of black holes, one models the profile of the relativistically-broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting method, which has so far only been applied to stellar-mass black holes, one models the thermal X-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the continuum-fitting method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.
Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and co rresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.
208 - Daichi Tsuna , Norita Kawanaka , 2018
Detectability of isolated black holes (IBHs) without a companion star but emitting X-rays by accretion from dense interstellar medium (ISM) or molecular cloud gas is investigated. We calculate orbits of IBHs in the Galaxy to derive a realistic spatia l distribution of IBHs, for various mean values of kick velocity at their birth $upsilon_{rm avg}$. X-ray luminosities of these IBHs are then calculated considering various phases of ISM and molecular clouds, for a wide range of the accretion efficiency $lambda$ (a ratio of the actual accretion rate to the Bondi rate) that is rather uncertain. It is found that detectable IBHs mostly reside near the Galactic Centre (GC), and hence taking the Galactic structure into account is essential. In the hard X-ray band, where identification of IBHs from other contaminating X-ray sources may be easier, the expected number of IBHs detectable by the past survey by NuSTAR towards GC is at most order unity. However, 30--100 IBHs may be detected by the future survey by FORCE with an optimistic parameter set of $upsilon_{rm avg} = 50 mathrm{km s^{-1}}$ and $lambda = 0.1$, implying that it may be possible to detect IBHs or constrain the model parameters.
Apart from the few tens of stellar-mass black holes discovered in binary systems, an order of $10^8$ isolated black holes (IBHs) are believed to be lurking in our Galaxy. Although some IBHs are able to accrete matter from the interstellar medium, the accretion flow is usually weak and thus radiatively inefficient, which results in significant material outflow. We study electron acceleration generated by the shock formed between this outflow and the surrounding material, and the subsequent radio synchrotron emission from accelerated electrons. By numerically calculating orbits of IBHs to obtain their spatial and velocity distributions, we estimate the number of IBHs detectable by surveys using SKA1-mid (SKA2) as $sim 30$ ($sim 700$) for the most optimistic case. The SKAs parallax measurements may accurately give their distances, possibly shedding light on the properties of the black holes in our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا