ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the Spins of Accreting Black Holes

100   0   0.0 ( 0 )
 نشر من قبل Jeffrey McClintock
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A typical galaxy is thought to contain tens of millions of stellar-mass black holes, the collapsed remnants of once massive stars, and a single nuclear supermassive black hole. Both classes of black holes accrete gas from their environments. The accreting gas forms a flattened orbiting structure known as an accretion disk. During the past several years, it has become possible to obtain measurements of the spins of the two classes of black holes by modeling the X-ray emission from their accretion disks. Two methods are employed, both of which depend upon identifying the inner radius of the accretion disk with the innermost stable circular orbit (ISCO), whose radius depends only on the mass and spin of the black hole. In the Fe K method, which applies to both classes of black holes, one models the profile of the relativistically-broadened iron line with a special focus on the gravitationally redshifted red wing of the line. In the continuum-fitting method, which has so far only been applied to stellar-mass black holes, one models the thermal X-ray continuum spectrum of the accretion disk. We discuss both methods, with a strong emphasis on the continuum-fitting method and its application to stellar-mass black holes. Spin results for eight stellar-mass black holes are summarized. These data are used to argue that the high spins of at least some of these black holes are natal, and that the presence or absence of relativistic jets in accreting black holes is not entirely determined by the spin of the black hole.

قيم البحث

اقرأ أيضاً

Primordial black holes in the mass range of ground-based gravitational-wave detectors can comprise a significant fraction of the dark matter. Mass and spin measurements from coalescences can be used to distinguish between an astrophysical or a primor dial origin of the binary black holes. In standard scenarios the spin of primordial black holes is very small at formation. However, the mass and spin can evolve through the cosmic history due to accretion. We show that the mass and spin of primordial black holes are correlated in a redshift-dependent fashion, in particular primordial black holes with masses below ${cal O}(30)M_odot$ are likely non-spinning at any redshift, whereas heavier black holes can be nearly extremal up to redshift $zsim10$. The dependence of the mass and spin distributions on the redshift can be probed with future detectors such as the Einstein Telescope. The mass and spin evolution affect the gravitational waveform parameters, in particular the distribution of the final mass and spin of the merger remnant, and that of the effective spin of the binary. We argue that, compared to the astrophysical-formation scenario, a primordial origin of black hole binaries might better explain the spin distribution of merger events detected by LIGO-Virgo, in which the effective spin parameter of the binary is compatible to zero except possibly for few high-mass events. Upcoming results from LIGO-Virgo third observation run might reinforce or weaken these predictions.
Baryonic gas falling onto a primordial black hole (PBH) emits photons via the free-free process. These photons can contribute the diffuse free-free background radiation in the frequency range of the cosmic microwave background radiation (CMB). We sho w that the intensity of the free-free background radiation from PBHs depends on the mass and abundance of PBHs. In particular, considering the growth of a dark matter (DM) halo around a PBH by non-PBH DM particles strongly enhances the free-free background radiation. Large PBH fraction increase the signal of the free-free emission. However, large PBH fraction also can heat the IGM gas and, accordingly, suppresses the accretion rate. As a result, the free-free emission decreases when the PBH fraction is larger than 0.1. We find that the free-free emission from PBHs in the CMB and radio frequency is much lower than the CMB blackbody spectrum and the observed free-free emission component in the background radiation. Therefore, it is difficult to obtain the constraint from the free-free emission observation. However further theoretical understanding and observation on the free-free emission from cosmological origin is helpful to study the PBH abundance with the stellar mass.
Relativistic reflection features are commonly observed in the X-ray spectra of accreting black holes. In the presence of high quality data and with the correct astrophysical model, X-ray reflection spectroscopy can be quite a powerful tool to probe t he strong gravity region, study the morphology of the accreting matter, measure black hole spins, and possibly test Einsteins theory of general relativity in the strong field regime. In the last decade, there has been significant progress in the development of the analysis of these features, thanks to more sophisticated astrophysical models and new observational facilities. Here we review the state-of-the-art in relativistic reflection modeling, listing assumptions and simplifications that may affect, at some level, the final measurements and may be investigated better in the future. We review black hole spin measurements and the most recent efforts to use X-ray reflection spectroscopy for testing fundamental physics.
112 - Bin Liu , Dong Lai 2021
Merging compact black-hole (BH) binaries are likely to exist in the nuclear star clusters around supermassive BHs (SMBHs), such as Sgr A$^ast$. They may also form in the accretion disks of active galactic nuclei. Such compact binaries can emit gravit ational waves (GWs) in the low-frequency band (0.001-1 Hz) that are detectable by several planned space-borne GW observatories. We show that the orbital axis of the compact binary may experience significant variation due to the frame-dragging effect associated with the spin of the SMBH. The dynamical behavior of the orbital axis can be understood analytically as a resonance phenomenon. We show that rate of change of the binary orbital axis encodes the information on the spin of the SMBH. Therefore detecting GWs from compact binaries around SMBHs, particularly the modulation of the waveform associated with the variation of the binary orbital axis, can provide a new probe on the spins of SMBHs.
I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole ac cretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا