ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray reverberation around accreting black holes

81   0   0.0 ( 0 )
 نشر من قبل Phil Uttley
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Luminous accreting stellar mass and supermassive black holes produce power-law continuum X-ray emission from a compact central corona. Reverberation time lags occur due to light travel time-delays between changes in the direct coronal emission and corresponding variations in its reflection from the accretion flow. Reverberation is detectable using light curves made in different X-ray energy bands, since the direct and reflected components have different spectral shapes. Larger, lower frequency, lags are also seen and are identified with propagation of fluctuations through the accretion flow and associated corona. We review the evidence for X-ray reverberation in active galactic nuclei and black hole X-ray binaries, showing how it can be best measured and how it may be modelled. The timescales and energy-dependence of the high frequency reverberation lags show that much of the signal is originating from very close to the black hole in some objects, within a few gravitational radii of the event horizon. We consider how these signals can be studied in the future to carry out X-ray reverberation mapping of the regions closest to black holes.

قيم البحث

اقرأ أيضاً

Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron K$alpha$ line, resulting from hard X-ray continuum photons illuminating the accretion disk. The reverberation lag resulting from the path length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modeling of energy dependent time lags and variability amplitude for a wide range of variability timescales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.
We present the publicly available model textsc{reltrans} that calculates the light-crossing delays and energy shifts experienced by X-ray photons originally emitted close to the black hole when they reflect from the accretion disk and are scattered i nto our line-of-sight, accounting for all general relativistic effects. Our model is fast and flexible enough to be simultaneously fit to the observed energy-dependent cross-spectrum for a large range of Fourier frequencies, as well as to the time-averaged spectrum. This not only enables better geometric constraints than only modelling the relativistically broadened reflection features in the time-averaged spectrum, but additionally enables constraints on the mass of supermassive black holes in active galactic nuclei and stellar-mass black holes in X-ray binaries. We include a self-consistently calculated radial profile of the disk ionization parameter and properly account for the effect that the telescope response has on the predicted time lags. We find that a number of previous spectral analyses have measured artificially low source heights due to not accounting for the former effect and that timing analyses have been affected by the latter. In particular, the magnitude of the soft lags in active galactic nuclei may have been under-estimated, and the magnitude of lags attributed to thermal reverberation in X-ray binaries may have been over-estimated. We fit textsc{reltrans} to the lag-energy spectrum of the Seyfert galaxy Mrk 335, resulting in a best fitting black hole mass that is smaller than previous optical reverberation measurements ($sim 7$ million compared with $sim14-26$ million $M_odot$).
71 - Davide Fiacconi 2017
The nature of ultraluminous X-ray sources (ULXs) -- off-nuclear extra-galactic sources with luminosity, assumed isotropic, $gtrsim 10^{39}$ erg s$^{-1}$ -- is still debated. One possibility is that ULXs are stellar black holes accreting beyond the Ed dington limit. This view has been recently reinforced by the discovery of ultrafast outflows at $sim 0.1$-$0.2c$ in the high resolution spectra of a handful of ULXs, as predicted by models of supercritical accretion discs. Under the assumption that ULXs are powered by super-Eddington accretion onto black holes, we use the properties of the observed outflows to self-consistently constrain their masses and accretion rates. We find masses $lesssim 100$ M$_{odot}$ and typical accretion rates $sim 10^{-5}$ M$_{odot}$ yr$^{-1}$, i.e. $approx 10$ times larger than the Eddington limit calculated with a radiative efficiency of 0.1. However, the emitted luminosity is only $approx 10%$ beyond the Eddington luminosity, because most of the energy released in the inner part of the accretion disc is used to accelerate the wind, which implies radiative efficiency $sim 0.01$. Our results are consistent with a formation model where ULXs are black hole remnants of massive stars evolved in low-metallicity environments.
168 - L. Miller , T.J. Turner 2011
Reverberation from scattering material around the black hole in active galactic nuclei is expected to produce a characteristic signature in a Fourier analysis of the time delays between directly-viewed continuum emission and the scattered light. Narr ow-line Seyfert 1 galaxies (NLS1) are highly variable at X-ray energies, and are ideal candidates for the detection of X-ray reverberation. We show new analysis of a small sample of NLS1 that clearly shows the expected time-delay signature, providing strong evidence for the existence of a high covering fraction of scattering and absorbing material a few tens to hundreds of gravitational radii from the black hole. We also show that an alternative interpretation of time delays in the NLS1 1H0707-495, as arising about one gravitational radius from the black hole, is strongly disfavoured in an analysis of the energy-dependence of the time delays.
We discuss a model of an X-ray illuminating source above an accretion disk of a rotating black hole. Within the so called lamp-post scheme we compute the expected (observed) polarization properties of the radiation reaching an observer. We explore th e dependencies on model parameters, employing Monte Carlo radiation transfer computations of the X-ray reflection on the accretion disk and taking general relativity effects into account. In particular, we discuss the role of the black hole spin, of the observer viewing angle, and of the primary X-ray source distance from the black hole. We give several examples of the resulting polarization degree for two types of exemplary objects - active galactic nuclei and Galactic black holes. In order to assess potential observability of the polarization features, we assume the sensitivity of the proposed New Hard X-ray Mission (NHXM). We examine the energy range from several keV to ~50 keV, so the iron-line complex and the Compton hump are included in our model spectra. We find the resultant polarization degree to increase at the higher end of the studied energy band, i.e. at >~20 keV. Thus, the best results for polarimetry of reflection spectra should be achieved at the Compton hump energy region. We also obtain higher polarization degree for large spin values of the black hole, small heights of the primary source, and low inclination angles of the observer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا