ترغب بنشر مسار تعليمي؟ اضغط هنا

LR-CNN: Local-aware Region CNN for Vehicle Detection in Aerial Imagery

86   0   0.0 ( 0 )
 نشر من قبل Wentong Liao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

State-of-the-art object detection approaches such as Fast/Faster R-CNN, SSD, or YOLO have difficulties detecting dense, small targets with arbitrary orientation in large aerial images. The main reason is that using interpolation to align RoI features can result in a lack of accuracy or even loss of location information. We present the Local-aware Region Convolutional Neural Network (LR-CNN), a novel two-stage approach for vehicle detection in aerial imagery. We enhance translation invariance to detect dense vehicles and address the boundary quantization issue amongst dense vehicles by aggregating the high-precision RoIs features. Moreover, we resample high-level semantic pooled features, making them regain location information from the features of a shallower convolutional block. This strengthens the local feature invariance for the resampled features and enables detecting vehicles in an arbitrary orientation. The local feature invariance enhances the learning ability of the focal loss function, and the focal loss further helps to focus on the hard examples. Taken together, our method better addresses the challenges of aerial imagery. We evaluate our approach on several challenging datasets (VEDAI, DOTA), demonstrating a significant improvement over state-of-the-art methods. We demonstrate the good generalization ability of our approach on the DLR 3K dataset.



قيم البحث

اقرأ أيضاً

In this work, we construct a large-scale dataset for vehicle re-identification (ReID), which contains 137k images of 13k vehicle instances captured by UAV-mounted cameras. To our knowledge, it is the largest UAV-based vehicle ReID dataset. To increas e intra-class variation, each vehicle is captured by at least two UAVs at different locations, with diverse view-angles and flight-altitudes. We manually label a variety of vehicle attributes, including vehicle type, color, skylight, bumper, spare tire and luggage rack. Furthermore, for each vehicle image, the annotator is also required to mark the discriminative parts that helps them to distinguish this particular vehicle from others. Besides the dataset, we also design a specific vehicle ReID algorithm to make full use of the rich annotation information. It is capable of explicitly detecting discriminative parts for each specific vehicle and significantly outperforms the evaluated baselines and state-of-the-art vehicle ReID approaches.
Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work propo ses an effective and simple oriented object detection framework, termed Oriented R-CNN, which is a general two-stage oriented detector with promising accuracy and efficiency. To be specific, in the first stage, we propose an oriented Region Proposal Network (oriented RPN) that directly generates high-quality oriented proposals in a nearly cost-free manner. The second stage is oriented R-CNN head for refining oriented Regions of Interest (oriented RoIs) and recognizing them. Without tricks, oriented R-CNN with ResNet50 achieves state-of-the-art detection accuracy on two commonly-used datasets for oriented object detection including DOTA (75.87% mAP) and HRSC2016 (96.50% mAP), while having a speed of 15.1 FPS with the image size of 1024$times$1024 on a single RTX 2080Ti. We hope our work could inspire rethinking the design of oriented detectors and serve as a baseline for oriented object detection. Code is available at https://github.com/jbwang1997/OBBDetection.
187 - Kai Zheng , Cen Chen 2021
The continual learning problem has been widely studied in image classification, while rare work has been explored in object detection. Some recent works apply knowledge distillation to constrain the model to retain old knowledge, but this rigid const raint is detrimental for learning new knowledge. In our paper, we propose a new scheme for continual learning of object detection, namely Contrast R-CNN, an approach strikes a balance between retaining the old knowledge and learning the new knowledge. Furthermore, we design a Proposal Contrast to eliminate the ambiguity between old and new instance to make the continual learning more robust. Extensive evaluation on the PASCAL VOC dataset demonstrates the effectiveness of our approach.
Late blight disease is one of the most destructive diseases in potato crop, leading to serious yield losses globally. Accurate diagnosis of the disease at early stage is critical for precision disease control and management. Current farm practices in crop disease diagnosis are based on manual visual inspection, which is costly, time consuming, subject to individual bias. Recent advances in imaging sensors (e.g. RGB, multiple spectral and hyperspectral cameras), remote sensing and machine learning offer the opportunity to address this challenge. Particularly, hyperspectral imagery (HSI) combining with machine learning/deep learning approaches is preferable for accurately identifying specific plant diseases because the HSI consists of a wide range of high-quality reflectance information beyond human vision, capable of capturing both spectral-spatial information. The proposed method considers the potential disease specific reflectance radiation variance caused by the canopy structural diversity, introduces the multiple capsule layers to model the hierarchical structure of the spectral-spatial disease attributes with the encapsulated features to represent the various classes and the rotation invariance of the disease attributes in the feature space. We have evaluated the proposed method with the real UAV-based HSI data under the controlled field conditions. The effectiveness of the hierarchical features has been quantitatively assessed and compared with the existing representative machine learning/deep learning methods. The experiment results show that the proposed model significantly improves the accuracy performance when considering hierarchical-structure of spectral-spatial features, comparing to the existing methods only using spectral, or spatial or spectral-spatial features without consider hierarchical-structure of spectral-spatial features.
In this paper, we propose a discriminative video representation for event detection over a large scale video dataset when only limited hardware resources are available. The focus of this paper is to effectively leverage deep Convolutional Neural Netw orks (CNNs) to advance event detection, where only frame level static descriptors can be extracted by the existing CNN toolkit. This paper makes two contributions to the inference of CNN video representation. First, while average pooling and max pooling have long been the standard approaches to aggregating frame level static features, we show that performance can be significantly improved by taking advantage of an appropriate encoding method. Second, we propose using a set of latent concept descriptors as the frame descriptor, which enriches visual information while keeping it computationally affordable. The integration of the two contributions results in a new state-of-the-art performance in event detection over the largest video datasets. Compared to improved Dense Trajectories, which has been recognized as the best video representation for event detection, our new representation improves the Mean Average Precision (mAP) from 27.6% to 36.8% for the TRECVID MEDTest 14 dataset and from 34.0% to 44.6% for the TRECVID MEDTest 13 dataset. This work is the core part of the winning solution of our CMU-Informedia team in TRECVID MED 2014 competition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا