ﻻ يوجد ملخص باللغة العربية
The continual learning problem has been widely studied in image classification, while rare work has been explored in object detection. Some recent works apply knowledge distillation to constrain the model to retain old knowledge, but this rigid constraint is detrimental for learning new knowledge. In our paper, we propose a new scheme for continual learning of object detection, namely Contrast R-CNN, an approach strikes a balance between retaining the old knowledge and learning the new knowledge. Furthermore, we design a Proposal Contrast to eliminate the ambiguity between old and new instance to make the continual learning more robust. Extensive evaluation on the PASCAL VOC dataset demonstrates the effectiveness of our approach.
Compared with model architectures, the training process, which is also crucial to the success of detectors, has received relatively less attention in object detection. In this work, we carefully revisit the standard training practice of detectors, an
Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work propo
Few-shot object detection, which aims at detecting novel objects rapidly from extremely few annotated examples of previously unseen classes, has attracted significant research interest in the community. Most existing approaches employ the Faster R-CN
We present a flexible and high-performance framework, named Pyramid R-CNN, for two-stage 3D object detection from point clouds. Current approaches generally rely on the points or voxels of interest for RoI feature extraction on the second stage, but
We present Sparse R-CNN, a purely sparse method for object detection in images. Existing works on object detection heavily rely on dense object candidates, such as $k$ anchor boxes pre-defined on all grids of image feature map of size $Htimes W$. In