ﻻ يوجد ملخص باللغة العربية
Despite strong connections through shared application areas, research efforts on power market optimization (e.g., unit commitment) and power network optimization (e.g., optimal power flow) remain largely independent. A notable illustration of this is the treatment of power generation cost functions, where nonlinear network optimization has largely used polynomial representations and market optimization has adopted piecewise linear encodings. This work combines state-of-the-art results from both lines of research to understand the best mathematical formulations of the nonlinear AC optimal power flow problem with piecewise linear generation cost functions. An extensive numerical analysis of non-convex models, linear approximations, and convex relaxations across fifty-four realistic test cases illustrates that nonlinear optimization methods are surprisingly sensitive to the mathematical formulation of piecewise linear functions. The results indicate that a poor formulation choice can slow down algorithm performance by a factor of ten, increasing the runtime from seconds to minutes. These results provide valuable insights into the best formulations of nonlinear optimal power flow problems with piecewise linear cost functions, a important step towards building a new generation of energy markets that incorporate the nonlinear AC power flow model.
In this paper, a flexible optimization-based framework for intentional islanding is presented. The decision is made of which transmission lines to switch in order to split the network while minimizing disruption, the amount of load shed, or grouping
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP
In recent years, the power systems research community has seen an explosion of novel methods for formulating the AC power flow equations. Consequently, benchmarking studies using the seminal AC Optimal Power Flow (AC-OPF) problem have emerged as the
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the trans
Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of gen