ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impacts of Convex Piecewise Linear Cost Formulations on AC Optimal Power Flow

101   0   0.0 ( 0 )
 نشر من قبل Carleton Coffrin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite strong connections through shared application areas, research efforts on power market optimization (e.g., unit commitment) and power network optimization (e.g., optimal power flow) remain largely independent. A notable illustration of this is the treatment of power generation cost functions, where nonlinear network optimization has largely used polynomial representations and market optimization has adopted piecewise linear encodings. This work combines state-of-the-art results from both lines of research to understand the best mathematical formulations of the nonlinear AC optimal power flow problem with piecewise linear generation cost functions. An extensive numerical analysis of non-convex models, linear approximations, and convex relaxations across fifty-four realistic test cases illustrates that nonlinear optimization methods are surprisingly sensitive to the mathematical formulation of piecewise linear functions. The results indicate that a poor formulation choice can slow down algorithm performance by a factor of ten, increasing the runtime from seconds to minutes. These results provide valuable insights into the best formulations of nonlinear optimal power flow problems with piecewise linear cost functions, a important step towards building a new generation of energy markets that incorporate the nonlinear AC power flow model.



قيم البحث

اقرأ أيضاً

In this paper, a flexible optimization-based framework for intentional islanding is presented. The decision is made of which transmission lines to switch in order to split the network while minimizing disruption, the amount of load shed, or grouping coherent generators. The approach uses a piecewise linear model of AC power flow, which allows the voltage and reactive power to be considered directly when designing the islands. Demonstrations on standard test networks show that solution of the problem provides islands that are balanced in real and reactive power, satisfy AC power flow laws, and have a healthy voltage profile.
82 - Zhao Yuan 2021
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP F (ACOPF) model gives an efficient way to find the global optimal solution of ACOPF but suffers from the relaxation gaps. The existence of relaxation gaps hinders the practical application of convex OPF due to the AC-infeasibility problem. We evaluate and improve the tightness of the convex ACOPF model in this paper. Various power networks and nodal loads are considered in the evaluation. A unified evaluation framework is implemented in Julia programming language. This evaluation shows the sensitivity of the relaxation gap and helps to benchmark the proposed tightness reinforcement approach (TRA). The proposed TRA is based on the penalty function method which penalizes the power loss relaxation in the objective function of the convex ACOPF model. A heuristic penalty algorithm is proposed to find the proper penalty parameter of the TRA. Numerical results show relaxation gaps exist in test cases especially for large-scale power networks under low nodal power loads. TRA is effective to reduce the relaxation gap of the convex ACOPF model.
In recent years, the power systems research community has seen an explosion of novel methods for formulating the AC power flow equations. Consequently, benchmarking studies using the seminal AC Optimal Power Flow (AC-OPF) problem have emerged as the primary method for evaluating these emerging methods. However, it is often difficult to directly compare these studies due to subtle differences in the AC-OPF problem formulation as well as the network, generation, and loading data that are used for evaluation. To help address these challenges, this IEEE PES Task Force report proposes a standardized AC-OPF mathematical formulation and the PGLib-OPF networks for benchmarking AC-OPF algorithms. A motivating study demonstrates some limitations of the established network datasets in the context of benchmarking AC-OPF algorithms and a validation study demonstrates the efficacy of using the PGLib-OPF networks for this purpose. In the interest of scientific discourse and future additions, the PGLib-OPF benchmark library is open-access and all the of network data is provided under a creative commons license.
129 - Zhao Yuan , Mario Paolone 2019
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the trans mission line {Pi}-model and practical engineering considerations. We rigorously prove and derive: (i) the loop constraint of voltage phase angle, required to make the branch flow model valid for meshed power networks, is a relaxation of the original nonconvex alternating current optimal power flow (o-ACOPF) model; (ii) the necessary conditions to recover a feasible solution of the o-ACOPF model from the optimal solution of the convex second-order cone ACOPF (SOC-ACOPF) model; (iii) the expression of the global optimal solution of the o-ACOPF model providing that the relaxation of the SOC-ACOPF model is tight; (iv) the (parametric) optimal value function of the o-ACOPF or SOC-ACOPF model is monotonic with regarding to the power loads if the objective function is monotonic with regarding to the nodal power generations; (v) tight solutions of the SOC-ACOPF model always exist when the power loads are sufficiently large. Numerical experiments using benchmark power networks to validate our findings and to compare with other convex OPF models, are given and discussed.
Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of gen erating power. Current can either be direct or alternating: while the former yields approximate linear programming formulations, the latter yields formulations of a much more interesting sort: namely, nonconvex nonlinear programs in complex numbers. In this technical survey, we derive formulation variants and relaxations of the alternating current optimal power flow problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا