ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Tightness of Convex Optimal Power Flow Model Based on Power Loss Relaxation

83   0   0.0 ( 0 )
 نشر من قبل Zhao Yuan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zhao Yuan




اسأل ChatGPT حول البحث

Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OPF (ACOPF) model gives an efficient way to find the global optimal solution of ACOPF but suffers from the relaxation gaps. The existence of relaxation gaps hinders the practical application of convex OPF due to the AC-infeasibility problem. We evaluate and improve the tightness of the convex ACOPF model in this paper. Various power networks and nodal loads are considered in the evaluation. A unified evaluation framework is implemented in Julia programming language. This evaluation shows the sensitivity of the relaxation gap and helps to benchmark the proposed tightness reinforcement approach (TRA). The proposed TRA is based on the penalty function method which penalizes the power loss relaxation in the objective function of the convex ACOPF model. A heuristic penalty algorithm is proposed to find the proper penalty parameter of the TRA. Numerical results show relaxation gaps exist in test cases especially for large-scale power networks under low nodal power loads. TRA is effective to reduce the relaxation gap of the convex ACOPF model.



قيم البحث

اقرأ أيضاً

129 - Zhao Yuan , Mario Paolone 2019
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the trans mission line {Pi}-model and practical engineering considerations. We rigorously prove and derive: (i) the loop constraint of voltage phase angle, required to make the branch flow model valid for meshed power networks, is a relaxation of the original nonconvex alternating current optimal power flow (o-ACOPF) model; (ii) the necessary conditions to recover a feasible solution of the o-ACOPF model from the optimal solution of the convex second-order cone ACOPF (SOC-ACOPF) model; (iii) the expression of the global optimal solution of the o-ACOPF model providing that the relaxation of the SOC-ACOPF model is tight; (iv) the (parametric) optimal value function of the o-ACOPF or SOC-ACOPF model is monotonic with regarding to the power loads if the objective function is monotonic with regarding to the nodal power generations; (v) tight solutions of the SOC-ACOPF model always exist when the power loads are sufficiently large. Numerical experiments using benchmark power networks to validate our findings and to compare with other convex OPF models, are given and discussed.
128 - Ren Hu , Qifeng Li 2021
The uncertainty of multiple power loads and re-newable energy generations in power systems increases the complexity of power flow analysis for decision-makers. The chance-constraint method can be applied to model the optimi-zation problems of power f low with uncertainty. This paper develops a novel solution approach for chance-constrained AC optimal power flow (CCACOPF) problem based on the da-ta-driven convexification of power flow and the fast algorithm for scenario technique (FAST). This method is computationally effective for mainly two reasons. First, the original nonconvex AC power flow constraints are approximated by a set of learn-ing-based quadratic convex ones. Second, FAST is a more ad-vanced distribution-free scenario-based solution method using far less scenarios than the conventional one, retaining a high confidence level. Eventually, the CCACOPF is converted into a computationally tractable convex optimization problem. The simulation results on IEEE test cases indicate that 1) the pro-posed solution method can excel the conventional one and ro-bust program in computational efficiency, 2) the data-driven convexification of power flow is effective in approximating original complex AC power flow.
For optimal power flow problems with chance constraints, a particularly effective method is based on a fixed point iteration applied to a sequence of deterministic power flow problems. However, a priori, the convergence of such an approach is not nec essarily guaranteed. This article analyses the convergence conditions for this fixed point approach, and reports numerical experiments including for large IEEE networks.
We propose a framework for integrating optimal power flow (OPF) with state estimation (SE) in the loop for distribution networks. Our approach combines a primal-dual gradient-based OPF solver with a SE feedback loop based on a limited set of sensors for system monitoring, instead of assuming exact knowledge of all states. The estimation algorithm reduces uncertainty on unmeasured grid states based on a few appropriate online state measurements and noisy pseudo-measurements. We analyze the convergence of the proposed algorithm and quantify the statistical estimation errors based on a weighted least squares (WLS) estimator. The numerical results on a 4521-node network demonstrate that this approach can scale to extremely large networks and provide robustness to both large pseudo measurement variability and inherent sensor measurement noise.
Despite strong connections through shared application areas, research efforts on power market optimization (e.g., unit commitment) and power network optimization (e.g., optimal power flow) remain largely independent. A notable illustration of this is the treatment of power generation cost functions, where nonlinear network optimization has largely used polynomial representations and market optimization has adopted piecewise linear encodings. This work combines state-of-the-art results from both lines of research to understand the best mathematical formulations of the nonlinear AC optimal power flow problem with piecewise linear generation cost functions. An extensive numerical analysis of non-convex models, linear approximations, and convex relaxations across fifty-four realistic test cases illustrates that nonlinear optimization methods are surprisingly sensitive to the mathematical formulation of piecewise linear functions. The results indicate that a poor formulation choice can slow down algorithm performance by a factor of ten, increasing the runtime from seconds to minutes. These results provide valuable insights into the best formulations of nonlinear optimal power flow problems with piecewise linear cost functions, a important step towards building a new generation of energy markets that incorporate the nonlinear AC power flow model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا