ﻻ يوجد ملخص باللغة العربية
In this paper, a flexible optimization-based framework for intentional islanding is presented. The decision is made of which transmission lines to switch in order to split the network while minimizing disruption, the amount of load shed, or grouping coherent generators. The approach uses a piecewise linear model of AC power flow, which allows the voltage and reactive power to be considered directly when designing the islands. Demonstrations on standard test networks show that solution of the problem provides islands that are balanced in real and reactive power, satisfy AC power flow laws, and have a healthy voltage profile.
Despite strong connections through shared application areas, research efforts on power market optimization (e.g., unit commitment) and power network optimization (e.g., optimal power flow) remain largely independent. A notable illustration of this is
As a representative mathematical expression of power flow (PF) constraints in electrical distribution system (EDS), the piecewise linearization (PWL) based PF constraints have been widely used in different EDS optimization scenarios. However, the lin
This chapter presents recent solutions to the optimal power flow (OPF) problem in the presence of renewable energy sources (RES), {such} as solar photo-voltaic and wind generation. After introducing the original formulation of the problem, arising fr
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP
In recent years, the power systems research community has seen an explosion of novel methods for formulating the AC power flow equations. Consequently, benchmarking studies using the seminal AC Optimal Power Flow (AC-OPF) problem have emerged as the