ترغب بنشر مسار تعليمي؟ اضغط هنا

Analytical results for the superflow of spin-orbit-coupled Bose-Einstein condensates in optical lattices

88   0   0.0 ( 0 )
 نشر من قبل Xiaobing Luo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we show that for sufficiently strong atomic interactions, there exist analytical solutions of current-carrying nonlinear Bloch states at the Brillouin zone edge to the model of spin-orbit-coupled Bose-Einstein condensates (BECs) with symmetric spin interaction loaded into optical lattices. These simple but generic exact solutions provide an analytical demonstration of some intriguing properties which have neither an analog in the regular BEC lattice systems nor in the uniform spin-orbit-coupled BEC systems. It is an analytical example for understanding the superfluid and other related properties of the spin-orbit-coupled BEC lattice systems.

قيم البحث

اقرأ أيضاً

Binary mixtures of Bose-Einstein condensates trapped in deep optical lattices and subjected to equal contributions of Rashba and Dresselhaus spin-orbit coupling (SOC), are investigated in the presence of a periodic time modulation of the Zeeman field . SOC tunability is explicitly demonstrated by adopting a mean-field tight-binding model for the BEC mixture and by performing an averaging approach in the strong modulation limit. In this case, the system can be reduced to an unmodulated vector discrete nonlinear Schrodinger equation with a rescaled SOC tunning parameter $alpha$, which depends only on the ratio between amplitude and frequency of the applied Zeeman field. The dependence of the spectrum of the linear system on $alpha$ has been analytically characterized. In particular, we show that extremal curves (ground and highest excited states) of the linear spectrum are continuous piecewise functions (together with their derivatives) of $alpha$, which consist of a finite number of decreasing band lobes joined by constant lines. This structure also remains in presence of not too large nonlinearities. Most important, the interactions introduce a number of localized states in the band-gaps that undergo change of properties as they collide with band lobes. The stability of ground states in the presence of the modulating field has been demonstrated by real time evolutions of the original (un-averaged) system. Localization properties of the ground state induced by the SOC tuning, and a parameter design for possible experimental observation have also been discussed.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op tical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
The realization of artificial gauge fields and spin-orbit coupling for ultra-cold quantum gases promises new insight into paradigm solid state systems. Here we experimentally probe the dispersion relation of a spin-orbit coupled Bose-Einstein condens ate loaded into a translating optical lattice by observing its dynamical stability, and develop an effective band structure that provides a theoretical understanding of the locations of the band edges. This system presents exciting new opportunities for engineering condensed-matter analogs using the flexible toolbox of ultra-cold quantum gases.
We analytically study the effect of gravitational and harmonic forces on ultra-cold atoms with synthetic spin-orbit coupling (SOC). In particular, we focus on the recently observed transitions between internal states induced by acceleration of the ex ternal modes. Our description corresponds to a generalized version of the Landau-Zener (LZ) model: the dimensionality is enlarged to combine the quantum treatment of the external variables with the internal-state characterization; additionally, atomic-interaction effects are considered. The emergence of the basic model is analytically traced. Namely, by using a sequence of unitary transformations and a subsequent reduction to the spin space, the SOC Hamiltonian, with the gravitational potential incorporated, is exactly converted into the primary LZ scenario. Moreover, the transitions induced by harmonic acceleration are approximately cast into the framework of the basic LZ model through a complete analytical procedure. We evaluate how the validity of our picture depends on the system preparation and on the magnitude of atomic-interaction effects. The identification of the regime of applicability and the rigorous characterization of the parameters of the effective model provide elements to control the transitions.
The fragmentation of spin-orbit coupled spin-1 Bose gas with a weak interaction in external harmonic trap is explored by both exact diagonalization and mean-field theory. This fragmentation tendency, which originates from the total angular momentum c onservation, is affected obviously by the spin-orbit coupling strength and the spin-dependent interaction. Strong spin-orbit interaction raises the inverse participation ratio, which describes the number of significantly occupied single-particle states. As the spin-dependent interaction changes from anti-ferromagnetic to ferromagnetic, the peak values in the inverse participation ratio become lower. Without the confinement of the appointed total angular momentum, the condensate chooses a zero or finite total angular momentum ground state, which is determined by both the interaction and the spin-orbit coupling strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا