ﻻ يوجد ملخص باللغة العربية
The 2D layered Ruddlesden-Popper crystal structure can host a broad range of functionally important behaviors. Here we establish extraordinary configurational disorder in a two dimensional layered Ruddlesden-Popper (RP) structure using entropy stabilization assisted synthesis. A protype A2CuO4 RP cuprate oxide with five components (La, Pr, Nd, Sm, Eu) on the A-site sublattice is designed and fabricated into epitaxial single crystal films using pulsed laser deposition. By comparing (La0.2Pr0.2Nd0.2Sm0.2Eu0.2)2CuO4 crystals grown under identical conditions but different substrates, it is found that heteroepitaxial strain plays an important role in crystal phase formation. When grown on a near lattice matched substrate, the high entropy oxide film features a T-type RP structure with uniform A-site cation mixing and square-planar CuO4 units, however, growing under strong compressive strain results in a single crystal non-RP cubic phase consistent with a CuX2O4 spinel structure. These observations are made with a range of combined characterizations using X-ray diffraction, atomic-resolution scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray absorption spectroscopy measurements. Designing configurational complexity and moving between 2D layered RP and 3D cubic crystal structures in this class of cuprate materials opens many opportunities for new design strategies related to magnetoresistance, unconventional superconductivity, ferroelectricity, catalysis, and ion transport.
Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is used to study LaNiO3/LaAlO3 superlattices grown on (La,Sr)AlO4 with varying single-layer thicknesses which are known to control their electronic proper
Combining ferroelectricity with other properties such as visible light absorption or long-range magnetic order requires the discovery of new families of ferroelectric materials. Here, through the analysis of a high-throughput database of phonon band
There is a variety of possible ways to tune the optical properties of 2D perovskites, though the mutual dependence between different tuning parameters hinders our fundamental understanding of their properties. In this work we attempt to address this
Li2SrNb2O7 (LSNO) crystallizes in a structure closely related to n = 2 Ruddlesden-Popper-type compounds, which is gen-erally formed by intergrowth of 2-dimensional perovskite-type blocks and rocksalt-type layers. The present study demonstrates a coex
A series of Ruddlesden-Popper nickelates, Nd$_{n+1}$Ni$_{n}$O$_{3n+1}$ (${n}$ = 1-5), have been stabilized in thin film form using reactive molecular-beam epitaxy. High crystalline quality has been verified by X-ray diffraction and scanning transmiss