ترغب بنشر مسار تعليمي؟ اضغط هنا

When does MAML Work the Best? An Empirical Study on Model-Agnostic Meta-Learning in NLP Applications

139   0   0.0 ( 0 )
 نشر من قبل Zequn Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Model-Agnostic Meta-Learning (MAML), a model-agnostic meta-learning method, is successfully employed in NLP applications including few-shot text classification and multi-domain low-resource language generation. Many impacting factors, including data quantity, similarity among tasks, and the balance between general language model and task-specific adaptation, can affect the performance of MAML in NLP, but few works have thoroughly studied them. In this paper, we conduct an empirical study to investigate these impacting factors and conclude when MAML works the best based on the experimental results.



قيم البحث

اقرأ أيضاً

We propose a new computationally-efficient first-order algorithm for Model-Agnostic Meta-Learning (MAML). The key enabling technique is to interpret MAML as a bilevel optimization (BLO) problem and leverage the sign-based SGD(signSGD) as a lower-leve l optimizer of BLO. We show that MAML, through the lens of signSGD-oriented BLO, naturally yields an alternating optimization scheme that just requires first-order gradients of a learned meta-model. We term the resulting MAML algorithm Sign-MAML. Compared to the conventional first-order MAML (FO-MAML) algorithm, Sign-MAML is theoretically-grounded as it does not impose any assumption on the absence of second-order derivatives during meta training. In practice, we show that Sign-MAML outperforms FO-MAML in various few-shot image classification tasks, and compared to MAML, it achieves a much more graceful tradeoff between classification accuracy and computation efficiency.
159 - Kelly Marchisio , Kevin Duh , 2020
Despite the reported success of unsupervised machine translation (MT), the field has yet to examine the conditions under which these methods succeed, and where they fail. We conduct an extensive empirical evaluation of unsupervised MT using dissimila r language pairs, dissimilar domains, diverse datasets, and authentic low-resource languages. We find that performance rapidly deteriorates when source and target corpora are from different domains, and that random word embedding initialization can dramatically affect downstream translation performance. We additionally find that unsupervised MT performance declines when source and target languages use different scripts, and observe very poor performance on authentic low-resource language pairs. We advocate for extensive empirical evaluation of unsupervised MT systems to highlight failure points and encourage continued research on the most promising paradigms.
The prior work on natural language inference (NLI) debiasing mainly targets at one or few known biases while not necessarily making the models more robust. In this paper, we focus on the model-agnostic debiasing strategies and explore how to (or is i t possible to) make the NLI models robust to multiple distinct adversarial attacks while keeping or even strengthening the models generalization power. We firstly benchmark prevailing neural NLI models including pretrained ones on various adversarial datasets. We then try to combat distinct known biases by modifying a mixture of experts (MoE) ensemble method and show that its nontrivial to mitigate multiple NLI biases at the same time, and that model-level ensemble method outperforms MoE ensemble method. We also perform data augmentation including text swap, word substitution and paraphrase and prove its efficiency in combating various (though not all) adversarial attacks at the same time. Finally, we investigate several methods to merge heterogeneous training data (1.35M) and perform model ensembling, which are straightforward but effective to strengthen NLI models.
Today, interpretability of Black-Box Natural Language Processing (NLP) models based on surrogates, like LIME or SHAP, uses word-based sampling to build the explanations. In this paper we explore the use of sentences to tackle NLP interpretability. Wh ile this choice may seem straight forward, we show that, when using complex classifiers like BERT, the word-based approach raises issues not only of computational complexity, but also of an out of distribution sampling, eventually leading to non founded explanations. By using sentences, the altered text remains in-distribution and the dimensionality of the problem is reduced for better fidelity to the black-box at comparable computational complexity.
It is often observed in knowledge-centric tasks (e.g., common sense question and answering, relation classification) that the integration of external knowledge such as entity representation into language models can help provide useful information to boost the performance. However, it is still unclear whether this benefit can extend to general natural language understanding (NLU) tasks. In this work, we empirically investigated the contribution of external knowledge by measuring the end-to-end performance of language models with various knowledge integration methods. We find that the introduction of knowledge can significantly improve the results on certain tasks while having no adverse effects on other tasks. We then employ mutual information to reflect the difference brought by knowledge and a neural interpretation model to reveal how a language model utilizes external knowledge. Our study provides valuable insights and guidance for practitioners to equip NLP models with knowledge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا