ﻻ يوجد ملخص باللغة العربية
Model-Agnostic Meta-Learning (MAML), a model-agnostic meta-learning method, is successfully employed in NLP applications including few-shot text classification and multi-domain low-resource language generation. Many impacting factors, including data quantity, similarity among tasks, and the balance between general language model and task-specific adaptation, can affect the performance of MAML in NLP, but few works have thoroughly studied them. In this paper, we conduct an empirical study to investigate these impacting factors and conclude when MAML works the best based on the experimental results.
We propose a new computationally-efficient first-order algorithm for Model-Agnostic Meta-Learning (MAML). The key enabling technique is to interpret MAML as a bilevel optimization (BLO) problem and leverage the sign-based SGD(signSGD) as a lower-leve
Despite the reported success of unsupervised machine translation (MT), the field has yet to examine the conditions under which these methods succeed, and where they fail. We conduct an extensive empirical evaluation of unsupervised MT using dissimila
The prior work on natural language inference (NLI) debiasing mainly targets at one or few known biases while not necessarily making the models more robust. In this paper, we focus on the model-agnostic debiasing strategies and explore how to (or is i
Today, interpretability of Black-Box Natural Language Processing (NLP) models based on surrogates, like LIME or SHAP, uses word-based sampling to build the explanations. In this paper we explore the use of sentences to tackle NLP interpretability. Wh
It is often observed in knowledge-centric tasks (e.g., common sense question and answering, relation classification) that the integration of external knowledge such as entity representation into language models can help provide useful information to