ﻻ يوجد ملخص باللغة العربية
It is often observed in knowledge-centric tasks (e.g., common sense question and answering, relation classification) that the integration of external knowledge such as entity representation into language models can help provide useful information to boost the performance. However, it is still unclear whether this benefit can extend to general natural language understanding (NLU) tasks. In this work, we empirically investigated the contribution of external knowledge by measuring the end-to-end performance of language models with various knowledge integration methods. We find that the introduction of knowledge can significantly improve the results on certain tasks while having no adverse effects on other tasks. We then employ mutual information to reflect the difference brought by knowledge and a neural interpretation model to reveal how a language model utilizes external knowledge. Our study provides valuable insights and guidance for practitioners to equip NLP models with knowledge.
Natural language inference (NLI) requires models to learn and apply commonsense knowledge. These reasoning abilities are particularly important for explainable NLI systems that generate a natural language explanation in addition to their label predic
Biomedical knowledge graphs (KGs) hold rich information on entities such as diseases, drugs, and genes. Predicting missing links in these graphs can boost many important applications, such as drug design and repurposing. Recent work has shown that ge
Automatically identifying fake news from the Internet is a challenging problem in deception detection tasks. Online news is modified constantly during its propagation, e.g., malicious users distort the original truth and make up fake news. However, t
In encoder-decoder neural models, multiple encoders are in general used to represent the contextual information in addition to the individual sentence. In this paper, we investigate multi-encoder approaches in documentlevel neural machine translation
Model-Agnostic Meta-Learning (MAML), a model-agnostic meta-learning method, is successfully employed in NLP applications including few-shot text classification and multi-domain low-resource language generation. Many impacting factors, including data