ﻻ يوجد ملخص باللغة العربية
In this paper we present state-of-the-art (SOTA) performance on the LibriSpeech corpus with two novel neural network architectures, a multistream CNN for acoustic modeling and a self-attentive simple recurrent unit (SRU) for language modeling. In the hybrid ASR framework, the multistream CNN acoustic model processes an input of speech frames in multiple parallel pipelines where each stream has a unique dilation rate for diversity. Trained with the SpecAugment data augmentation method, it achieves relative word error rate (WER) improvements of 4% on test-clean and 14% on test-other. We further improve the performance via N-best rescoring using a 24-layer self-attentive SRU language model, achieving WERs of 1.75% on test-clean and 4.46% on test-other.
This paper proposes multistream CNN, a novel neural network architecture for robust acoustic modeling in speech recognition tasks. The proposed architecture processes input speech with diverse temporal resolutions by applying different dilation rates
Recurrent neural network transducers (RNN-T) have been successfully applied in end-to-end speech recognition. However, the recurrent structure makes it difficult for parallelization . In this paper, we propose a self-attention transducer (SA-T) for s
Automatic speech recognition (ASR) tasks are resolved by end-to-end deep learning models, which benefits us by less preparation of raw data, and easier transformation between languages. We propose a novel end-to-end deep learning model architecture n
User studies have shown that reducing the latency of our simultaneous lecture translation system should be the most important goal. We therefore have worked on several techniques for reducing the latency for both components, the automatic speech reco
We introduce the problem of adapting a black-box, cloud-based ASR system to speech from a target accent. While leading online ASR services obtain impressive performance on main-stream accents, they perform poorly on sub-populations - we observed that