ترغب بنشر مسار تعليمي؟ اضغط هنا

Multistream CNN for Robust Acoustic Modeling

104   0   0.0 ( 0 )
 نشر من قبل Kyu Han
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes multistream CNN, a novel neural network architecture for robust acoustic modeling in speech recognition tasks. The proposed architecture processes input speech with diverse temporal resolutions by applying different dilation rates to convolutional neural networks across multiple streams to achieve the robustness. The dilation rates are selected from the multiples of a sub-sampling rate of 3 frames. Each stream stacks TDNN-F layers (a variant of 1D CNN), and output embedding vectors from the streams are concatenated then projected to the final layer. We validate the effectiveness of the proposed multistream CNN architecture by showing consistent improvements against Kaldis best TDNN-F model across various data sets. Multistream CNN improves the WER of the test-other set in the LibriSpeech corpus by 12% (relative). On custom data from ASAPPs production ASR system for a contact center, it records a relative WER improvement of 11% for customer channel audio to prove its robustness to data in the wild. In terms of real-time factor, multistream CNN outperforms the baseline TDNN-F by 15%, which also suggests its practicality on production systems. When combined with self-attentive SRU LM rescoring, multistream CNN contributes for ASAPP to achieve the best WER of 1.75% on test-clean in LibriSpeech.



قيم البحث

اقرأ أيضاً

In this paper we present state-of-the-art (SOTA) performance on the LibriSpeech corpus with two novel neural network architectures, a multistream CNN for acoustic modeling and a self-attentive simple recurrent unit (SRU) for language modeling. In the hybrid ASR framework, the multistream CNN acoustic model processes an input of speech frames in multiple parallel pipelines where each stream has a unique dilation rate for diversity. Trained with the SpecAugment data augmentation method, it achieves relative word error rate (WER) improvements of 4% on test-clean and 14% on test-other. We further improve the performance via N-best rescoring using a 24-layer self-attentive SRU language model, achieving WERs of 1.75% on test-clean and 4.46% on test-other.
Automatic lyrics to polyphonic audio alignment is a challenging task not only because the vocals are corrupted by background music, but also there is a lack of annotated polyphonic corpus for effective acoustic modeling. In this work, we propose (1) using additional speech and music-informed features and (2) adapting the acoustic models trained on a large amount of solo singing vocals towards polyphonic music using a small amount of in-domain data. Incorporating additional information such as voicing and auditory features together with conventional acoustic features aims to bring robustness against the increased spectro-temporal variations in singing vocals. By adapting the acoustic model using a small amount of polyphonic audio data, we reduce the domain mismatch between training and testing data. We perform several alignment experiments and present an in-depth alignment error analysis on acoustic features, and model adaptation techniques. The results demonstrate that the proposed strategy provides a significant error reduction of word boundary alignment over comparable existing systems, especially on more challenging polyphonic data with long-duration musical interludes.
257 - Xinpei Zhou , Jiwei Li , Xi Zhou 2018
Automatic speech recognition (ASR) tasks are resolved by end-to-end deep learning models, which benefits us by less preparation of raw data, and easier transformation between languages. We propose a novel end-to-end deep learning model architecture n amely cascaded CNN-resBiLSTM-CTC. In the proposed model, we add residual blocks in BiLSTM layers to extract sophisticated phoneme and semantic information together, and apply cascaded structure to pay more attention mining information of hard negative samples. By applying both simple Fast Fourier Transform (FFT) technique and n-gram language model (LM) rescoring method, we manage to achieve word error rate (WER) of 3.41% on LibriSpeech test clean corpora. Furthermore, we propose a new batch-varied method to speed up the training process in length-varied tasks, which result in 25% less training time.
Modelling the process that a listener actuates in deriving the words intended by a speaker requires setting a hypothesis on how lexical items are stored in memory. This work aims at developing a system that imitates humans when identifying words in r unning speech and, in this way, provide a framework to better understand human speech processing. We build a speech recognizer for Italian based on the principles of Stevens model of Lexical Access in which words are stored as hierarchical arrangements of distinctive features (Stevens, K. N. (2002). Toward a model for lexical access based on acoustic landmarks and distinctive features, J. Acoust. Soc. Am., 111(4):1872-1891). Over the past few decades, the Speech Communication Group at the Massachusetts Institute of Technology (MIT) developed a speech recognition system for English based on this approach. Italian will be the first language beyond English to be explored; the extension to another language provides the opportunity to test the hypothesis that words are represented in memory as a set of hierarchically-arranged distinctive features, and reveal which of the underlying mechanisms may have a language-independent nature. This paper also introduces a new Lexical Access corpus, the LaMIT database, created and labeled specifically for this work, that will be provided freely to the speech research community. Future developments will test the hypothesis that specific acoustic discontinuities - called landmarks - that serve as cues to features, are language independent, while other cues may be language-dependent, with powerful implications for understanding how the human brain recognizes speech.
In this paper, we propose a sub-utterance unit selection framework to remove acoustic segments in audio recordings that carry little information for acoustic scene classification (ASC). Our approach is built upon a universal set of acoustic segment u nits covering the overall acoustic scene space. First, those units are modeled with acoustic segment models (ASMs) used to tokenize acoustic scene utterances into sequences of acoustic segment units. Next, paralleling the idea of stop words in information retrieval, stop ASMs are automatically detected. Finally, acoustic segments associated with the stop ASMs are blocked, because of their low indexing power in retrieval of most acoustic scenes. In contrast to building scene models with whole utterances, the ASM-removed sub-utterances, i.e., acoustic utterances without stop acoustic segments, are then used as inputs to the AlexNet-L back-end for final classification. On the DCASE 2018 dataset, scene classification accuracy increases from 68%, with whole utterances, to 72.1%, with segment selection. This represents a competitive accuracy without any data augmentation, and/or ensemble strategy. Moreover, our approach compares favourably to AlexNet-L with attention.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا