ترغب بنشر مسار تعليمي؟ اضغط هنا

Frequency mixing in a ferrimagnetic sphere resonator

59   0   0.0 ( 0 )
 نشر من قبل Eyal Buks
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frequency mixing in ferrimagnetic resonators based on yttrium and calcium vanadium iron garnets (YIG and CVBIG) is employed for studying their nonlinear interactions. The ferrimagnetic Kittel mode is driven by applying a pump tone at a frequency close to resonance. We explore two nonlinear frequency mixing configurations. In the first one, mixing between a transverse pump tone and an added longitudinal weak signal is explored, and the experimental results are compared with the predictions of the Landau-Zener-Stuckelberg model. In the second one, intermodulation measurements are employed by mixing pump and signal tones both in the transverse direction for studying a bifurcation between a stable spiral and a stable node attractors. Our results are applicable for developing sensitive signal receivers with high gain for both the radio frequency and the microwave bands.

قيم البحث

اقرأ أيضاً

We report the observation of strong coupling between the exchange-coupled spins in gallium-doped yttrium iron garnet and a superconducting coplanar microwave resonator made from Nb. The measured coupling rate of 450 MHz is proportional to the square- root of the number of exchange-coupled spins and well exceeds the loss rate of 50 MHz of the spin system. This demonstrates that exchange coupled systems are suitable for cavity quantum electrodynamics experiments, while allowing high integration densities due to their extraordinary high spin densities. Our results furthermore show, that experiments with multiple exchange-coupled spin systems interacting via a single resonator are within reach.
We report on four-wave mixing in a silicon microring resonator using a self-pumping scheme instead of an external laser. The ring resonator is inserted in an external-loop cavity with a fibered semiconductor amplifier as a source of gain. The silicon microring acts as a filter and we observe lasing in one of the microrings resonances. We study correlations between signal and idler generated beams using a Joint Spectral Density experiment.
We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity difference of more than 8 dB, close to the best optical parametric amplifiers and oscillators. The absence of a cavity makes the system immune to external perturbations, and the strong quantum noise reduction is observed over a large frequency range.
Recent demonstrations of ultracoherent nanomechanical resonators introduce the prospect of new protocols for solid state sensing applications. Here, we propose to use two coupled ultracoherent resonator modes on a Si$_3$N$_4$ membrane for the detecti on of small nuclear spin ensembles. To this end, we employ parametric frequency conversion between nondegenerate modes. The nondegenerate modes result from coupled degenerate resonators, and the parametric conversion is mediated by periodic
Frequency comb generation in microresonators at visible wavelengths has found applications in a variety of areas such as metrology, sensing, and imaging. To achieve Kerr combs based on four-wave mixing in a microresonator, dispersion must be in the a nomalous regime. In this work, we demonstrate dispersion engineering in a microbubble resonator (MBR) fabricated by a two-CO$_2$ laser beam technique. By decreasing the wall thickness of the MBR down to 1.4 $mu$m, the zero dispersion wavelength shifts to values shorter than 764 nm, making phase matching possible around 765 nm. With the optical textit{Q}-factor of the MBR modes being greater than $10^7$, four-wave mixing is observed at 765 nm for a pump power of 3 mW. By increasing the pump power, parametric oscillation is achieved, and a frequency comb with 14 comb lines is generated at visible wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا