ﻻ يوجد ملخص باللغة العربية
We show that a simple scheme based on nondegenerate four-wave mixing in a hot atomic vapor behaves like a near-perfect phase-insensitive optical amplifier, which can generate bright twin beams with a measured quantum noise reduction in the intensity difference of more than 8 dB, close to the best optical parametric amplifiers and oscillators. The absence of a cavity makes the system immune to external perturbations, and the strong quantum noise reduction is observed over a large frequency range.
We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.
We observed electromagnetically-induced-transparency-based four-wave mixing (FWM) in the pulsed regime at low light levels. The FWM conversion efficiency of 3.8(9)% was observed in a four-level system of cold 87Rb atoms using a driving laser pulse wi
Efficient frequency conversion of photons has important applications in optical quantum technology because the frequency range suitable for photon manipulation and communication usually varies widely. Recently, an efficient frequency conversion syste
We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot-noise tunnel junction (SNTJ), approaches the quantum limit. Biased with a d
Single photon-level quantum frequency conversion has recently been demonstrated using silicon nitride microring resonators. The resonance enhancement offered by such systems enables high-efficiency translation of quantum states of light across wide f