ترغب بنشر مسار تعليمي؟ اضغط هنا

High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids

42   0   0.0 ( 0 )
 نشر من قبل Hans Huebl
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of strong coupling between the exchange-coupled spins in gallium-doped yttrium iron garnet and a superconducting coplanar microwave resonator made from Nb. The measured coupling rate of 450 MHz is proportional to the square-root of the number of exchange-coupled spins and well exceeds the loss rate of 50 MHz of the spin system. This demonstrates that exchange coupled systems are suitable for cavity quantum electrodynamics experiments, while allowing high integration densities due to their extraordinary high spin densities. Our results furthermore show, that experiments with multiple exchange-coupled spin systems interacting via a single resonator are within reach.

قيم البحث

اقرأ أيضاً

88 - C. Janvier 2014
We describe and characterize a microwave setup to probe the Andreev levels of a superconducting atomic contact. The contact is part of a superconducting loop inductively coupled to a superconducting coplanar resonator. By monitoring the resonator ref lection coefficient close to its resonance frequency as a function of both flux through the loop and frequency of a second tone we perform spectroscopy of the transition between two Andreev levels of highly transmitting channels of the contact. The results indicate how to perform coherent manipulation of these states.
129 - P. Haikka , Y. Kubo , A. Bienfait 2016
We propose a method for detecting the presence of a single spin in a crystal by coupling it to a high-quality factor superconducting planar resonator. By confining the microwave field in a constriction of nanometric dimensions, the coupling constant can be as high as $5-10$,kHz. This coupling affects the amplitude of the field emitted by the resonator, and the integrated homodyne signal allows detection of a single spin with unit signal-to-noise ratio within few milliseconds. We further show that a stochastic master equation approach and a Bayesian analysis of the full time dependent homodyne signal improves this figure by $sim 30%$ for typical parameters.
Frequency mixing in ferrimagnetic resonators based on yttrium and calcium vanadium iron garnets (YIG and CVBIG) is employed for studying their nonlinear interactions. The ferrimagnetic Kittel mode is driven by applying a pump tone at a frequency clos e to resonance. We explore two nonlinear frequency mixing configurations. In the first one, mixing between a transverse pump tone and an added longitudinal weak signal is explored, and the experimental results are compared with the predictions of the Landau-Zener-Stuckelberg model. In the second one, intermodulation measurements are employed by mixing pump and signal tones both in the transverse direction for studying a bifurcation between a stable spiral and a stable node attractors. Our results are applicable for developing sensitive signal receivers with high gain for both the radio frequency and the microwave bands.
105 - Matthew T. Bell , Lev B. Ioffe , 2011
We have studied the microwave response of a single Cooper-pair transistor (CPT) coupled to a lumped-element microwave resonator. The resonance frequency of this circuit, $f_{r}$, was measured as a function of the charge $n_{g}$ induced on the CPT isl and by the gate electrode, and the phase difference across the CPT, $phi_{B}$, which was controlled by the magnetic flux in the superconducting loop containing the CPT. The observed $f_{r}(n_{g},phi_{B})$ dependences reflect the variations of the CPT Josephson inductance with $n_{g}$ and $phi_{B}$ as well as the CPT excitation when the microwaves induce transitions between different quantum states of the CPT. The results are in excellent agreement with our simulations based on the numerical diagonalization of the circuit Hamiltonian. This agreement over the whole range of $n_{g}$ and $phi_{B}$ is unexpected, because the relevant energies vary widely, from 0.1K to 3K. The observed strong dependence $f_{r}(n_{g},phi_{B})$ near the resonance excitation of the CPT provides a tool for sensitive charge measurements.
In this experiment, we couple a superconducting Transmon qubit to a high-impedance $645 Omega$ microwave resonator. Doing so leads to a large qubit-resonator coupling rate $g$, measured through a large vacuum Rabi splitting of $2gsimeq 910$ MHz. The coupling is a significant fraction of the qubit and resonator oscillation frequencies $omega$, placing our system close to the ultra-strong coupling regime ($bar{g}=g/omega=0.071$ on resonance). Combining this setup with a vacuum-gap Transmon architecture shows the potential of reaching deep into the ultra-strong coupling $bar{g} sim 0.45$ with Transmon qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا