ترغب بنشر مسار تعليمي؟ اضغط هنا

A Lite Microphone Array Beamforming Scheme with Maximum Signal-to-Noise Ratio Filter

143   0   0.0 ( 0 )
 نشر من قبل Lu Ma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Since space-domain information can be utilized, microphone array beamforming is often used to enhance the quality of the speech by suppressing directional disturbance. However, with the increasing number of microphone, the complexity would be increased. In this paper, a concise beamforming scheme using Maximum Signal-to-Noise Ratio (SNR) filter is proposed to reduce the beamforming complexity. The maximum SNR filter is implemented by using the estimated direction-of-arrival (DOA) of the speech source localization (SSL) and the solving method of independent vector analysis (IVA). Our experiments show that when compared with other widely-used algorithms, the proposed algorithm obtain higher gain of signal-to-interference and noise ratio (SINR).



قيم البحث

اقرأ أيضاً

We propose BeamTransformer, an efficient architecture to leverage beamformers edge in spatial filtering and transformers capability in context sequence modeling. BeamTransformer seeks to optimize modeling of sequential relationship among signals from different spatial direction. Overlapping speech detection is one of the tasks where such optimization is favorable. In this paper we effectively apply BeamTransformer to detect overlapping segments. Comparing to single-channel approach, BeamTransformer exceeds in learning to identify the relationship among different beam sequences and hence able to make predictions not only from the acoustic signals but also the localization of the source. The results indicate that a successful incorporation of microphone array signals can lead to remarkable gains. Moreover, BeamTransformer takes one step further, as speech from overlapped speakers have been internally separated into different beams.
A crucial aspect for the successful deployment of audio-based models in-the-wild is the robustness to the transformations introduced by heterogeneous acquisition conditions. In this work, we propose a method to perform one-shot microphone style trans fer. Given only a few seconds of audio recorded by a target device, MicAugment identifies the transformations associated to the input acquisition pipeline and uses the learned transformations to synthesize audio as if it were recorded under the same conditions as the target audio. We show that our method can successfully apply the style transfer to real audio and that it significantly increases model robustness when used as data augmentation in the downstream tasks.
Spatial clustering techniques can achieve significant multi-channel noise reduction across relatively arbitrary microphone configurations, but have difficulty incorporating a detailed speech/noise model. In contrast, LSTM neural networks have success fully been trained to recognize speech from noise on single-channel inputs, but have difficulty taking full advantage of the information in multi-channel recordings. This paper integrates these two approaches, training LSTM speech models to clean the masks generated by the Model-based EM Source Separation and Localization (MESSL) spatial clustering method. By doing so, it attains both the spatial separation performance and generality of multi-channel spatial clustering and the signal modeling performance of multiple parallel single-channel LSTM speech enhancers. Our experiments show that when our system is applied to the CHiME-3 dataset of noisy tablet recordings, it increases speech quality as measured by the Perceptual Evaluation of Speech Quality (PESQ) algorithm and reduces the word error rate of the baseline CHiME-3 speech recognizer, as compared to the default BeamformIt beamformer.
Deep speaker embedding represents the state-of-the-art technique for speaker recognition. A key problem with this approach is that the resulting deep speaker vectors tend to be irregularly distributed. In previous research, we proposed a deep normali zation approach based on a new discriminative normalization flow (DNF) model, by which the distributions of individual speakers are arguably transformed to homogeneous Gaussians. This normalization was demonstrated to be effective, but despite this remarkable success, we empirically found that the latent codes produced by the DNF model are generally neither homogeneous nor Gaussian, although the model has assumed so. In this paper, we argue that this problem is largely attributed to the maximum-likelihood (ML) training criterion of the DNF model, which aims to maximize the likelihood of the observations but not necessarily improve the Gaussianality of the latent codes. We therefore propose a new Maximum Gaussianality (MG) training approach that directly maximizes the Gaussianality of the latent codes. Our experiments on two data sets, SITW and CNCeleb, demonstrate that our new MG training approach can deliver much better performance than the previous ML training, and exhibits improved domain generalizability, particularly with regard to cosine scoring.
We propose a unified approach to data-driven source-filter modeling using a single neural network for developing a neural vocoder capable of generating high-quality synthetic speech waveforms while retaining flexibility of the source-filter model to control their voice characteristics. Our proposed network called unified source-filter generative adversarial networks (uSFGAN) is developed by factorizing quasi-periodic parallel WaveGAN (QPPWG), one of the neural vocoders based on a single neural network, into a source excitation generation network and a vocal tract resonance filtering network by additionally implementing a regularization loss. Moreover, inspired by neural source filter (NSF), only a sinusoidal waveform is additionally used as the simplest clue to generate a periodic source excitation waveform while minimizing the effect of approximations in the source filter model. The experimental results demonstrate that uSFGAN outperforms conventional neural vocoders, such as QPPWG and NSF in both speech quality and pitch controllability.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا