ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved MVDR Beamforming Using LSTM Speech Models to Clean Spatial Clustering Masks

59   0   0.0 ( 0 )
 نشر من قبل Felix Grezes
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Spatial clustering techniques can achieve significant multi-channel noise reduction across relatively arbitrary microphone configurations, but have difficulty incorporating a detailed speech/noise model. In contrast, LSTM neural networks have successfully been trained to recognize speech from noise on single-channel inputs, but have difficulty taking full advantage of the information in multi-channel recordings. This paper integrates these two approaches, training LSTM speech models to clean the masks generated by the Model-based EM Source Separation and Localization (MESSL) spatial clustering method. By doing so, it attains both the spatial separation performance and generality of multi-channel spatial clustering and the signal modeling performance of multiple parallel single-channel LSTM speech enhancers. Our experiments show that when our system is applied to the CHiME-3 dataset of noisy tablet recordings, it increases speech quality as measured by the Perceptual Evaluation of Speech Quality (PESQ) algorithm and reduces the word error rate of the baseline CHiME-3 speech recognizer, as compared to the default BeamformIt beamformer.



قيم البحث

اقرأ أيضاً

Recurrent neural networks using the LSTM architecture can achieve significant single-channel noise reduction. It is not obvious, however, how to apply them to multi-channel inputs in a way that can generalize to new microphone configurations. In cont rast, spatial clustering techniques can achieve such generalization, but lack a strong signal model. This paper combines the two approaches to attain both the spatial separation performance and generality of multichannel spatial clustering and the signal modeling performance of multiple parallel single-channel LSTM speech enhancers. The system is compared to several baselines on the CHiME3 dataset in terms of speech quality predicted by the PESQ algorithm and word error rate of a recognizer trained on mis-matched conditions, in order to focus on generalization. Our experiments show that by combining the LSTM models with the spatial clustering, we reduce word error rate by 4.6% absolute (17.2% relative) on the development set and 11.2% absolute (25.5% relative) on test set compared with spatial clustering system, and reduce by 10.75% (32.72% relative) on development set and 6.12% absolute (15.76% relative) on test data compared with LSTM model.
Recent works have shown that Deep Recurrent Neural Networks using the LSTM architecture can achieve strong single-channel speech enhancement by estimating time-frequency masks. However, these models do not naturally generalize to multi-channel inputs from varying microphone configurations. In contrast, spatial clustering techniques can achieve such generalization but lack a strong signal model. Our work proposes a combination of the two approaches. By using LSTMs to enhance spatial clustering based time-frequency masks, we achieve both the signal modeling performance of multiple single-channel LSTM-DNN speech enhancers and the signal separation performance and generality of multi-channel spatial clustering. We compare our proposed system to several baselines on the CHiME-3 dataset. We evaluate the quality of the audio from each system using SDR from the BSS_eval toolkit and PESQ. We evaluate the intelligibility of the output of each system using word error rate from a Kaldi automatic speech recognizer.
Training Automatic Speech Recognition (ASR) models under federated learning (FL) settings has attracted a lot of attention recently. However, the FL scenarios often presented in the literature are artificial and fail to capture the complexity of real FL systems. In this paper, we construct a challenging and realistic ASR federated experimental setup consisting of clients with heterogeneous data distributions using the French and Italian sets of the CommonVoice dataset, a large heterogeneous dataset containing thousands of different speakers, acoustic environments and noises. We present the first empirical study on attention-based sequence-to-sequence End-to-End (E2E) ASR model with three aggregation weighting strategies -- standard FedAvg, loss-based aggregation and a novel word error rate (WER)-based aggregation, compared in two realistic FL scenarios: cross-silo with 10 clients and cross-device with 2K and 4K clients. Our analysis on E2E ASR from heterogeneous and realistic federated acoustic models provides the foundations for future research and development of realistic FL-based ASR applications.
96 - Xiaofei Li , Radu Horaud 2020
This paper proposes a delayed subband LSTM network for online monaural (single-channel) speech enhancement. The proposed method is developed in the short time Fourier transform (STFT) domain. Online processing requires frame-by-frame signal reception and processing. A paramount feature of the proposed method is that the same LSTM is used across frequencies, which drastically reduces the number of network parameters, the amount of training data and the computational burden. Training is performed in a subband manner: the input consists of one frequency, together with a few context frequencies. The network learns a speech-to-noise discriminative function relying on the signal stationarity and on the local spectral pattern, based on which it predicts a clean-speech mask at each frequency. To exploit future information, i.e. look-ahead, we propose an output-delayed subband architecture, which allows the unidirectional forward network to process a few future frames in addition to the current frame. We leverage the proposed method to participate to the DNS real-time speech enhancement challenge. Experiments with the DNS dataset show that the proposed method achieves better performance-measuring scores than the DNS baseline method, which learns the full-band spectra using a gated recurrent unit network.
This paper presents, a first of its kind, audio-visual (AV) speech enhacement challenge in real-noisy settings. A detailed description of the AV challenge, a novel real noisy AV corpus (ASPIRE), benchmark speech enhancement task, and baseline perform ance results are outlined. The latter are based on training a deep neural architecture on a synthetic mixture of Grid corpus and ChiME3 noises (consisting of bus, pedestrian, cafe, and street noises) and testing on the ASPIRE corpus. Subjective evaluations of five different speech enhancement algorithms (including SEAGN, spectrum subtraction (SS) , log-minimum mean-square error (LMMSE), audio-only CochleaNet, and AV CochleaNet) are presented as baseline results. The aim of the multi-modal challenge is to provide a timely opportunity for comprehensive evaluation of novel AV speech enhancement algorithms, using our new benchmark, real-noisy AV corpus and specified performance metrics. This will promote AV speech processing research globally, stimulate new ground-breaking multi-modal approaches, and attract interest from companies, academics and researchers working in AV speech technologies and applications. We encourage participants (through a challenge website sign-up) from both the speech and hearing research communities, to benefit from their complementary approaches to AV speech in noise processing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا