ﻻ يوجد ملخص باللغة العربية
The search for relativistic scattering signals of cosmogenic light dark matter at terrestrial detectors has received increasing attention as an alternative approach to probe dark-sector physics. Large-volume neutrino experiments are well motivated for searches of dark matter that interacts very weakly with Standard Model particles and/or that exhibits a small incoming flux. We perform a dedicated signal sensitivity study for a detector similar to the one proposed by the DUNE Collaboration for cosmogenic dark-matter signals resulting from a non-minimal multi-particle dark-sector scenario. The liquid argon time projection chamber technology adopted for the DUNE detectors is particularly suited for searching for complicated signatures owing to good measurement resolution and particle identification, as well as $dE/dx$ measurements to recognize merged tracks. Taking inelastic boosted dark matter as our benchmark scenario that allows for multiple visible particles in the final state, we demonstrate that the DUNE far detectors have a great potential for probing scattering signals induced by relativistic light dark matter. Detector effects and backgrounds have been estimated and taken into account. Model-dependent and model-independent expected sensitivity limits for a DUNE-like detector are presented.
We explore the sensitivity of the Deep Underground Neutrino Experiment (DUNE) near detector and the proposed DUNE-PRISM movable near detector to sub-GeV dark matter, specifically scalar dark matter coupled to the Standard Model via a sub-GeV dark pho
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example o
We investigate the thermal cosmology and terrestrial and astrophysical phenomenology of a sub-GeV hadrophilic dark sector. The specific construction explored in this work features a Dirac fermion dark matter candidate interacting with a light scalar
Primordial black holes (PBHs) are a potential dark matter candidate whose masses can span over many orders of magnitude. If they have masses in the $10^{15}-10^{17}$ g range, they can emit sizeable fluxes of MeV neutrinos through evaporation via Hawk
Many dark matter models generically predict invisible and displaced signatures at Belle II, but even striking events may be missed by the currently implemented search programme because of inefficient trigger algorithms. Of particular interest are fin