ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing Energetic Light Dark Matter Searches in Dark Matter and Neutrino Experiments

356   0   0.0 ( 0 )
 نشر من قبل Doojin Kim
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example of energetic light dark matter, we scrutinize two representative search channels, electron scattering and proton scattering including deep inelastic scattering processes, in the context of elastic and inelastic boosted dark matter, in a completely detector-independent manner. In this work, a dark gauge boson is adopted as the particle to mediate the interactions between the Standard Model particles and boosted dark matter. We find that the signal sensitivity of the two channels highly depends on the (mass-)parameter region to probe, so search strategies and channels should be designed sensibly especially at the earlier stage of experiments. In particular, the contribution from the boosted-dark-matter-initiated deep inelastic scattering can be subleading (important) compared to the quasi-elastic proton scattering, if the mass of the mediator is below (above) $mathcal{O}$(GeV). We demonstrate how to practically perform searches and relevant analyses, employing example detectors such as DarkSide-20k, DUNE, Hyper-Kamiokande, and DeepCore, with their respective detector specifications taken into consideration. For other potential detectors we provide a summary table, collecting relevant information, from which similar studies can be fulfilled readily.



قيم البحث

اقرأ أيضاً

107 - Jennifer Kile 2009
We consider, in a model-independent framework, the potential for observing dark matter in neutrino detectors through the interaction $bar{f} p to e^+ n$, where $f$ is a dark fermion. Operators of dimension six or less are considered, and constraints are placed on their coefficients using the dark matter lifetime and its decays to states which include $gamma$ rays or $e^+e^-$ pairs. After these constraints are applied, there remains one operator which can possibly contribute to $bar{f} p to e^+ n$ in neutrino detectors at an observable level. We then consider the results from the Super-Kamiokande relic supernova neutrino search and find that Super-K can probe the new physics scale of this interaction up to $O(100mbox{ TeV})$.
In this paper, we introduce a novel program of fixed-target searches for thermal-origin Dark Matter (DM), which couples inelastically to the Standard Model. Since the DM only interacts by transitioning to a heavier state, freeze-out proceeds via coan nihilation and the unstable heavier state is depleted at later times. For sufficiently large mass splittings, direct detection is kinematically forbidden and indirect detection is impossible, so this scenario can only be tested with accelerators. Here we propose new searches at proton and electron beam fixed-target experiments to probe sub-GeV coannihilation, exploiting the distinctive signals of up- and down-scattering as well as decay of the excited state inside the detector volume. We focus on a representative model in which DM is a pseudo-Dirac fermion coupled to a hidden gauge field (dark photon), which kinetically mixes with the visible photon. We define theoretical targets in this framework and determine the existing bounds by reanalyzing results from previous experiments. We find that LSND, E137, and BaBar data already place strong constraints on the parameter space consistent with a thermal freeze-out origin, and that future searches at Belle II and MiniBooNE, as well as recently-proposed fixed-target experiments such as LDMX and BDX, can cover nearly all remaining gaps. We also briefly comment on the discovery potential for proposed beam dump and neutrino experiments which operate at much higher beam energies.
174 - Jennifer Kile 2009
We explore the potential for the direct detection of light fermionic dark matter in neutrino detectors. We consider the possible observation of the process $bar{f} p to e^+ n$, where $f$ is a dark matter fermion, in a model-independent manner. All op erators of dimension six or lower which can contribute to this process are listed, and we place constraints on these operators from decays of $f$ which contain $gamma$ rays or electrons. One operator is found which is sufficiently weakly constrained that it could give observable interactions in neutrino detectors. We find that Super-Kamiokande can probe the new physics scale for this operator up to $O(100{TeV})$.
We discuss two complementary strategies to search for light dark matter (LDM) exploiting the positron beam possibly available in the future at Jefferson Laboratory. LDM is a new compelling hypothesis that identifies dark matter with new sub-GeV hidde n sector states, neutral under standard model interactions and interacting with our world through a new force. Accelerator-based searches at the intensity frontier are uniquely suited to explore it. Thanks to the high intensity and the high energy of the CEBAF (Continuous Electron Beam Accelerator Facility) beam, and relying on a novel LDM production mechanism via positron annihilation on target atomic electrons, the proposed strategies will allow us to explore new regions in the LDM parameters space, thoroughly probing the LDM hypothesis as well as more general hidden sector scenarios.
The sensitivity to dark matter signals at neutrino experiments is fundamentally challenged by the neutrino rates, as they leave similar signatures in their detectors. As a way to improve the signal sensitivity, we investigate a dark matter search str ategy which utilizes the timing and energy spectra to discriminate dark matter from neutrino signals at low-energy, pulsed-beam neutrino experiments. This strategy was proposed in our companion paper arXiv:1906.10745, which we apply to potential searches at COHERENT, JSNS$^2$, and CCM. These experiments are not only sources of neutrinos but also high intensity sources of photons. The dark matter candidate of interest comes from the relatively prompt decay of a dark sector gauge boson which may replace a Standard-Model photon, so the delayed neutrino events can be suppressed by keeping prompt events only. Furthermore, prompt neutrino events can be rejected by a cut in recoil energy spectra, as their incoming energy is relatively small and bounded from above while dark matter may deposit a sizable energy beyond it. We apply the search strategy of imposing a combination of energy and timing cuts to the existing CsI data of the COHERENT experiment as a concrete example, and report a mild excess beyond known backgrounds. We then investigate the expected sensitivity reaches to dark matter signals in our benchmark experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا