ترغب بنشر مسار تعليمي؟ اضغط هنا

Hunting On- and Off-Axis for Light Dark Matter with DUNE-PRISM

80   0   0.0 ( 0 )
 نشر من قبل Kevin Kelly
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the sensitivity of the Deep Underground Neutrino Experiment (DUNE) near detector and the proposed DUNE-PRISM movable near detector to sub-GeV dark matter, specifically scalar dark matter coupled to the Standard Model via a sub-GeV dark photon. We consider dark matter produced in the DUNE target that travels to the detector and scatters off electrons. By combining searches for dark matter at many off-axis positions with DUNE-PRISM, sensitivity to this scenario can be much stronger than when performing a measurement at one on-axis position.



قيم البحث

اقرأ أيضاً

The search for relativistic scattering signals of cosmogenic light dark matter at terrestrial detectors has received increasing attention as an alternative approach to probe dark-sector physics. Large-volume neutrino experiments are well motivated fo r searches of dark matter that interacts very weakly with Standard Model particles and/or that exhibits a small incoming flux. We perform a dedicated signal sensitivity study for a detector similar to the one proposed by the DUNE Collaboration for cosmogenic dark-matter signals resulting from a non-minimal multi-particle dark-sector scenario. The liquid argon time projection chamber technology adopted for the DUNE detectors is particularly suited for searching for complicated signatures owing to good measurement resolution and particle identification, as well as $dE/dx$ measurements to recognize merged tracks. Taking inelastic boosted dark matter as our benchmark scenario that allows for multiple visible particles in the final state, we demonstrate that the DUNE far detectors have a great potential for probing scattering signals induced by relativistic light dark matter. Detector effects and backgrounds have been estimated and taken into account. Model-dependent and model-independent expected sensitivity limits for a DUNE-like detector are presented.
Next generation neutrino oscillation experiments like DUNE and T2HK are multi-purpose observatories, with a rich physics program beyond oscillation measurements. A special role is played by their near detector facilities, which are particularly well- suited to search for weakly coupled dark sector particles produced in the primary target. In this paper, we demonstrate this by estimating the sensitivity of the DUNE near detectors to the scattering of sub-GeV DM particles and to the decay of sub-GeV sterile neutrinos (heavy neutral leptons). We discuss in particular the importance of the DUNE-PRISM design, which allows some of the near detectors to be moved away from the beam axis. At such off-axis locations, the signal-to-background ratio improves for many new physics searches. We find that this leads to a dramatic boost in the sensitivity to boosted DM particles interacting mainly with hadrons, while for boosted DM interacting with leptons, data taken on-axis leads to marginally stronger exclusion limits. Searches for heavy neutral leptons perform equally well in both configurations.
The LHC search strategies for leptoquarks that couple dominantly to a top quark are different than for the ones that couple mostly to the light quarks. We consider charge $1/3$ ($phi_1$) and $5/3$ ($phi_5$) scalar leptoquarks that can decay to a top quark and a charged lepton ($tell$) giving rise to a resonance system of a boosted top and a high-$p_{rm T}$ lepton. We introduce simple phenomenological models suitable for bottom-up studies and explicitly map them to all possible scalar leptoquark models within the Buchm{u}ller-R{u}ckl-Wyler classifications that can have the desired decays. We study pair and single productions of these leptoquarks. Contrary to the common perception, we find that the single production of top-philic leptoquarks $phi = {phi_1,phi_5}$ in association with a lepton and jets could be significant for order one $phi tell$ coupling in certain scenarios. We propose a strategy of selecting events with at least one hadronic-top and two high-$p_{rm T}$ same flavour opposite sign leptons. This captures events from both pair and single productions. Our strategy can significantly enhance the LHC discovery potential especially in the high-mass region where single productions become more prominent. Our estimation shows that a scalar leptoquark as heavy as $sim1.7$ TeV can be discovered at the $14$ TeV LHC with 3 ab$^{-1}$ of integrated luminosity in the $tellell+X$ channel for $100%$ branching ratio in the $phito tell $ decay mode. However, in some scenarios, the discovery reach can increase beyond $2$ TeV even though the branching ratio comes down to about $50%$.
We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of t he particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example o f energetic light dark matter, we scrutinize two representative search channels, electron scattering and proton scattering including deep inelastic scattering processes, in the context of elastic and inelastic boosted dark matter, in a completely detector-independent manner. In this work, a dark gauge boson is adopted as the particle to mediate the interactions between the Standard Model particles and boosted dark matter. We find that the signal sensitivity of the two channels highly depends on the (mass-)parameter region to probe, so search strategies and channels should be designed sensibly especially at the earlier stage of experiments. In particular, the contribution from the boosted-dark-matter-initiated deep inelastic scattering can be subleading (important) compared to the quasi-elastic proton scattering, if the mass of the mediator is below (above) $mathcal{O}$(GeV). We demonstrate how to practically perform searches and relevant analyses, employing example detectors such as DarkSide-20k, DUNE, Hyper-Kamiokande, and DeepCore, with their respective detector specifications taken into consideration. For other potential detectors we provide a summary table, collecting relevant information, from which similar studies can be fulfilled readily.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا