ترغب بنشر مسار تعليمي؟ اضغط هنا

Field-Guide-Inspired Zero-Shot Learning

260   0   0.0 ( 0 )
 نشر من قبل Utkarsh Mall
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern recognition systems require large amounts of supervision to achieve accuracy. Adapting to new domains requires significant data from experts, which is onerous and can become too expensive. Zero-shot learning requires an annotated set of attributes for a novel category. Annotating the full set of attributes for a novel category proves to be a tedious and expensive task in deployment. This is especially the case when the recognition domain is an expert domain. We introduce a new field-guide-inspired approach to zero-shot annotation where the learner model interactively asks for the most useful attributes that define a class. We evaluate our method on classification benchmarks with attribute annotations like CUB, SUN, and AWA2 and show that our model achieves the performance of a model with full annotations at the cost of a significantly fewer number of annotations. Since the time of experts is precious, decreasing annotation cost can be very valuable for real-world deployment.



قيم البحث

اقرأ أيضاً

Zero-shot learning (ZSL) aims at understanding unseen categories with no training examples from class-level descriptions. To improve the discriminative power of ZSL, we model the visual learning process of unseen categories with inspiration from the psychology of human creativity for producing novel art. First, we propose CIZSL-v1 as a creativity inspired model for generative ZSL. We relate ZSL to human creativity by observing that ZSL is about recognizing the unseen, and creativity is about creating a likable unseen. We introduce a learning signal inspired by creativity literature that explores the unseen space with hallucinated class-descriptions and encourages careful deviation of their visual feature generations from seen classes while allowing knowledge transfer from seen to unseen classes. Second, CIZSL-v2 is proposed as an improved version of CIZSL-v1 for generative zero-shot learning. CIZSL-v2 consists of an investigation of additional inductive losses for unseen classes along with a semantic guided discriminator. Empirically, we show consistently that CIZSL losses can improve generative ZSL models on the challenging task of generalized ZSL from a noisy text on CUB and NABirds datasets. We also show the advantage of our approach to Attribute-based ZSL on AwA2, aPY, and SUN datasets. We also show that CIZSL-v2 has improved performance compared to CIZSL-v1.
Most of the Zero-Shot Learning (ZSL) algorithms currently use pre-trained models as their feature extractors, which are usually trained on the ImageNet data set by using deep neural networks. The richness of the feature information embedded in the pr e-trained models can help the ZSL model extract more useful features from its limited training samples. However, sometimes the difference between the training data set of the current ZSL task and the ImageNet data set is too large, which may lead to the use of pre-trained models has no obvious help or even negative impact on the performance of the ZSL model. To solve this problem, this paper proposes a biologically inspired feature enhancement framework for ZSL. Specifically, we design a dual-channel learning framework that uses auxiliary data sets to enhance the feature extractor of the ZSL model and propose a novel method to guide the selection of the auxiliary data sets based on the knowledge of biological taxonomy. Extensive experimental results show that our proposed method can effectively improve the generalization ability of the ZSL model and achieve state-of-the-art results on three benchmark ZSL tasks. We also explained the experimental phenomena through the way of feature visualization.
In this paper, we study the problem of recognizing compositional attribute-object concepts within the zero-shot learning (ZSL) framework. We propose an episode-based cross-attention (EpiCA) network which combines merits of cross-attention mechanism a nd episode-based training strategy to recognize novel compositional concepts. Firstly, EpiCA bases on cross-attention to correlate concept-visual information and utilizes the gated pooling layer to build contextualized representations for both images and concepts. The updated representations are used for a more in-depth multi-modal relevance calculation for concept recognition. Secondly, a two-phase episode training strategy, especially the transductive phase, is adopted to utilize unlabeled test examples to alleviate the low-resource learning problem. Experiments on two widely-used zero-shot compositional learning (ZSCL) benchmarks have demonstrated the effectiveness of the model compared with recent approaches on both conventional and generalized ZSCL settings.
Contemporary state-of-the-art approaches to Zero-Shot Learning (ZSL) train generative nets to synthesize examples conditioned on the provided metadata. Thereafter, classifiers are trained on these synthetic data in a supervised manner. In this work, we introduce Z2FSL, an end-to-end generative ZSL framework that uses such an approach as a backbone and feeds its synthesized output to a Few-Shot Learning (FSL) algorithm. The two modules are trained jointly. Z2FSL solves the ZSL problem with a FSL algorithm, reducing, in effect, ZSL to FSL. A wide class of algorithms can be integrated within our framework. Our experimental results show consistent improvement over several baselines. The proposed method, evaluated across standard benchmarks, shows state-of-the-art or competitive performance in ZSL and Generalized ZSL tasks.
A classic approach toward zero-shot learning (ZSL) is to map the input domain to a set of semantically meaningful attributes that could be used later on to classify unseen classes of data (e.g. visual data). In this paper, we propose to learn a visua l feature dictionary that has semantically meaningful atoms. Such dictionary is learned via joint dictionary learning for the visual domain and the attribute domain, while enforcing the same sparse coding for both dictionaries. Our novel attribute aware formulation provides an algorithmic solution to the domain shift/hubness problem in ZSL. Upon learning the joint dictionaries, images from unseen classes can be mapped into the attribute space by finding the attribute aware joint sparse representation using solely the visual data. We demonstrate that our approach provides superior or comparable performance to that of the state of the art on benchmark datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا