ﻻ يوجد ملخص باللغة العربية
Considering $Z(3930)$ and $X(4160)$ as $chi_{c2}(2P)$ and $chi_{c2}(3P)$ states, the semileptonic and nonleptonic of $B_c$ decays to $Z(3930)$ and $X(4160)$ are studied by the improved Bethe-Salpeter(B-S) Method. The form factors of decay are calculated through the overlap integrals of the meson wave functions in the whole accessible kinematical range. The influence of relativistic corrections are considered in the exclusive decays. Branching ratios of $B_c$ weak decays to $Z(3930)$ and $X(4160)$ are predicted. Some of the branching ratios are: $Br(B_c^+to Z(3930)e^+ u_e)$$=(3.03^{+0.09}_{-0.16})times 10^{-4}$ and $Br(B_c^+to X(4160)e^+ u_e)$$=(3.55^{+0.83}_{-0.35})times 10^{-6}$. These results may provide useful information to discover $Z(3930)$ and $X(4160)$ and the necessary information for the phenomenological study of $B_c$ physics.
Considering $X(3940)$ and $X(4160)$ as $eta_c(3S)$ and $eta_c(4S)$, we study the productions of $X(3940)$ and $X(4160)$ in exclusive weak decays of $B_c$ meson by the improved Bethe-Salpeter(B-S) Method. Using the relativistic B-S equation and Mandel
Inspired by the newly observed state $X^{*}(3860)$, we analyze the strong decay behaviors of some charmonium-like states $X^{*}(3860)$,$X(3872)$, $X(3915)$, $X(3930)$ and $X(3940)$ by the $^{3}P_{0}$ model. We carry out our work based on the hypothes
The new mesons $X(3940)$ and $X(4160)$ have been found by Belle Collaboration in the processes $e^+e^-to J/psi D^{(*)}bar D^{(*)}$. Considering $X(3940)$ and $X(4160)$ as $eta_c(3S)$ and $eta_c(4S)$ states, the two-body open charm OZI-allowed strong
The challenge to obtain from the Euclidean Bethe--Salpeter amplitude the amplitude in Minkowski is solved by resorting to un-Wick rotating the Euclidean homogeneous integral equation. The results obtained with this new practical method for the amputa
We construct weak axial one-boson exchange currents for the Bethe-Salpeter equation, starting from chiral Lagrangians of the N-Delta(1236)-pi-rho-a_1-omega system. The currents fulfil the Ward-Takahashi identities and the matrix element of the full c