ﻻ يوجد ملخص باللغة العربية
Inspired by the newly observed state $X^{*}(3860)$, we analyze the strong decay behaviors of some charmonium-like states $X^{*}(3860)$,$X(3872)$, $X(3915)$, $X(3930)$ and $X(3940)$ by the $^{3}P_{0}$ model. We carry out our work based on the hypothesis that these states are all being the charmonium systems. Our analysis indicates that $0^{++}$ charmonium state can be a good candidate for $X^{*}(3860)$ and $1^{++}$ state is the possible assignment for $X(3872)$. Considering as the $3^{1}S_{0}$ state, the decay behavior of $X(3940)$ is inconsistent with the experimental data. So, we can not assign $X(3940)$ as the $3^{1}S_{0}$ charmonium state by present work. Besides, our analysis imply that it is reasonable to assign $X(3915)$ and $X(3930)$ to be the same state, $2^{++}$. However, combining our analysis with that of Zhou~cite{ZhouZY}, we speculate that $X(3915)$/$X(3930)$ might not be a pure $coverline{c}$ systems.
The new mesons $X(3940)$ and $X(4160)$ have been found by Belle Collaboration in the processes $e^+e^-to J/psi D^{(*)}bar D^{(*)}$. Considering $X(3940)$ and $X(4160)$ as $eta_c(3S)$ and $eta_c(4S)$ states, the two-body open charm OZI-allowed strong
It has been proposed recently (Phys. Rev. Lett. 115 (2015), 022001) that the charmoniumlike state named X(3915) and suggested to be a $0^{++}$ scalar, is just the helicity-0 realisation of the $2^{++}$ tensor state $chi_{c2}(3930)$. This scenario wou
In this paper we consider all possible 1D and 2P ccbar assignments for the recently discovered X(3872). Taking the experimental mass as input, we give numerical results for the E1 radiative widths as well as the three principal types of strong decays
Considering $X(3940)$ and $X(4160)$ as $eta_c(3S)$ and $eta_c(4S)$, we study the productions of $X(3940)$ and $X(4160)$ in exclusive weak decays of $B_c$ meson by the improved Bethe-Salpeter(B-S) Method. Using the relativistic B-S equation and Mandel
We report a search for $X(3872)$ and $X(3915)$ in $B^+ to chi_{c1} pi^0 K^+$ decays. We set an upper limit of $mathcal{B}(B^+ to X(3872) K^+) times mathcal{B}(X(3872) to chi_{c1} pi^0)$ $ < 8.1 times 10^{-6}$ and $mathcal{B}(B^+ to X(3915) K^+) times