ﻻ يوجد ملخص باللغة العربية
The new mesons $X(3940)$ and $X(4160)$ have been found by Belle Collaboration in the processes $e^+e^-to J/psi D^{(*)}bar D^{(*)}$. Considering $X(3940)$ and $X(4160)$ as $eta_c(3S)$ and $eta_c(4S)$ states, the two-body open charm OZI-allowed strong decay of $eta_c(3S)$ and $eta_c(4S)$ are studied by the improved Bethe-Salpeter method combine with the $^3P_0$ model. The strong decay width of $eta_c(3S)$ is $Gamma_{eta_c(3S)}=(33.5^{+18.4}_{-15.3})$ MeV, which is closed to the result of $X(3940)$, therefore, $eta_c(3S)$ is a good candidate of $X(3940)$. The strong decay width of $eta_c(4S)$ is $Gamma_{eta_c(4S)}=(69.9^{+22.4}_{-21.1})$ MeV, considering the errors of the results, its closed to the lower limit of $X(4160)$. But the ratio of the decay width $frac{Gamma(Dbar D^*)}{Gamma (D^*bar D^*)}$ of $eta_c(4S)$ is larger than the experimental data of $X(4160)$. According to the above analysis, $eta_c(4S)$ is not the candidate of $X(4160)$, and more investigations of $X(4160)$ is needed.
Considering $X(3940)$ and $X(4160)$ as $eta_c(3S)$ and $eta_c(4S)$, we study the productions of $X(3940)$ and $X(4160)$ in exclusive weak decays of $B_c$ meson by the improved Bethe-Salpeter(B-S) Method. Using the relativistic B-S equation and Mandel
Inspired by the newly observed state $X^{*}(3860)$, we analyze the strong decay behaviors of some charmonium-like states $X^{*}(3860)$,$X(3872)$, $X(3915)$, $X(3930)$ and $X(3940)$ by the $^{3}P_{0}$ model. We carry out our work based on the hypothes
Considering $Z(3930)$ and $X(4160)$ as $chi_{c2}(2P)$ and $chi_{c2}(3P)$ states, the semileptonic and nonleptonic of $B_c$ decays to $Z(3930)$ and $X(4160)$ are studied by the improved Bethe-Salpeter(B-S) Method. The form factors of decay are calcula
In this work, we revisit the isospin violating decays of $X(3872)$ in a coupled-channel effective field theory. In the molecular scheme, the $X(3872)$ is interpreted as the bound state of $bar{D}^{*0}D^0/bar{D}^0D^{*0}$ and $D^{*-}D^+/D^-D^{*+}$ chan
We discuss how the latest data on X(3872) in B and B_s decays speak about its tetraquark nature. The established decay pattern, including the up to date observations by CMS, are explained by the mixing of two quasi-degenerate, unresolvable, neutral s